A219612 Numbers k that divide the sum of the first k Fibonacci numbers (beginning with F(0)).
1, 4, 6, 9, 11, 19, 24, 29, 31, 34, 41, 46, 48, 59, 61, 71, 72, 79, 89, 94, 96, 100, 101, 106, 109, 120, 129, 131, 139, 144, 149, 151, 166, 179, 181, 191, 192, 199, 201, 211, 214, 216, 220, 226, 229, 239, 240, 241, 249, 251, 269, 271, 274, 281, 288, 311
Offset: 1
Examples
Sum of first 6 Fibonacci numbers is 0+1+1+2+3+5 = 12. Because 6 divides 12, 6 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
fmod:= proc(a, b) local A, n, f1, f2, f; uses LinearAlgebra[Modular]; A:= Mod(b, <<1, 1>|<1, 0>>, integer[8]); MatrixPower(b, M, a)[1, 2]; end proc: 1, op(select(t -> fmod(t+1,t) = 1, [$2..10^4])); # Robert Israel, Oct 13 2015
-
Mathematica
okQ[n_] := n == 1 || Mod[Fibonacci[n+1], n] == 1; Select[Range[1000], okQ] (* Jean-François Alcover, Feb 04 2023 *)
-
PARI
lista(nn) = {sf = 0; for (n=0, nn, sf += fibonacci(n); if (sf % (n+1) == 0, print1(n+1, ", ")););} \\ Michel Marcus, Jun 05 2013
-
Python
sum_, prpr, prev = 0, 0, 1 for i in range(1, 1000): sum_ += prpr if sum_ % i == 0: print(i, end=', ') prpr, prev = prev, prpr+prev
Formula
a(n) = A101907(n) + 1. - Altug Alkan, Dec 29 2015
Comments