cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219615 a(n) = Sum_{k=0..12} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16369, 32647, 64839, 127858, 249528, 480492, 910596, 1695222, 3096514, 5546382, 9740686, 16777216, 28354132, 47050564, 76717268, 123012781, 194129627, 301766029, 462411533, 699030226, 1043243132
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 23 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into thirteen or fewer parts.
a(n) is the sum of the first thirteen terms in the n-th row of Pascal's triangle.

Examples

			a(13)= 8191 because there are (2^13) -1 compositions of 14 into thirteen or fewer parts. When 1<= n <= 12, for n=5, a(5) = 2*a(4) = 2*16 = 32. For n=12, a(12) = 2*a(11)= 2*2048 = 4096. When n>12, for n=13, a(13) = 2*a(12) - binomial(12,12) = 2*4096 - 1 = 8191. For n = 15, a(15) = 2*a(14) - binomial(14,12) = 2*16369 - 91 = 32738 - 91 = 32647.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 12}], {n, 0, 40}] (* T. D. Noe, Nov 27 2012 *)
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{1,2,4,8,16,32,64,128,256,512,1024,2048,4096},40] (* Harvey P. Dale, Nov 29 2012 *)
  • PARI
    a(n)=sum(k=1,12,binomial(n,k)) \\ Charles R Greathouse IV, Nov 27 2012

Formula

a(n) = (n^12 - 54n^11 + 1397n^10 - 21450n^9 + 218823n^8 - 1508562n^7 + 7374191n^6 - 23551110n^5 + 58206676n^4 - 48306984n^3 + 173699712n^2 + 312888960n)/479001600. - Charles R Greathouse IV, Nov 27 2012
a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512, a(10)=1024, a(11)=2048, a(12)=4096, a(n)= 13*a(n-1)- 78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+ 1716*a(n-7)- 1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Harvey P. Dale, Nov 29 2012

Extensions

Sequence corrected and extended by T. D. Noe, Nov 26 2012
Definition corrected by Harvey P. Dale, Nov 29 2012