cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219676 a(n) = Sum_{k=0..13} binomial(n, k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16383, 32752, 65399, 130238, 258096, 507624, 988116, 1898712, 3593934, 6690448, 12236830, 21977516, 38754732, 67108864, 114159428, 190876696, 313889477, 508019104, 809785133, 1272196666
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 24 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fourteen or fewer parts.
a(n) is the sum of the first fourteen terms in the n-th row of Pascal's triangle.

Examples

			a(14) = 16383 because there are 2^14 = 16384 compositions of 15 into any size parts but one of the compositions (1 + 1 + ... + 1 = 15) has more than fourteen parts.
When 1 <= n <= 13, a(7) = 2*a(6) = 2*64= 128, a(13) = 2*a(12) = 2*4096 = 8192.
When n > 13, a(14) = 2*a(13) - C(13, 13) = 2*8192 - 1 = 16383, a(15) = 2*a(14) - C(14, 13) = 2*16383 - 14 = 32766 - 14 = 32752.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(binomial(n,k),k=0..13):
    map(f, [$0..100]); # Robert Israel, Mar 14 2018
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 13}], {n, 0, 40}] (* T. D. Noe, Nov 26 2012 *)

Formula

a(n) = Sum_{k=1..7} binomial(n+1, 2k-1).
a(n) = 1 +(n^13 -65*n^12 +2015*n^11 -37609*n^10 +470613*n^9 -4081935*n^8 +25378925*n^7 -110205667*n^6 +351042406*n^5 -657328100*n^4 +1303568760*n^3 +771653376*n^2 +4546558080*n)/13!. - corrected by Mokhtar Mohamed, Dec 01 2012
G.f.: (1 - 12*x + 67*x^2 - 230*x^3 + 541*x^4 - 920*x^5 + 1163*x^6 - 1106*x^7 + 791*x^8 - 420*x^9 + 161*x^10 - 42*x^11 + 7*x^12)/(1-x)^14.
a(n) = 2*a(n-1), for 1 <= n <= 13, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1, 13), for n > 13.

Extensions

Corrected and extended by T. D. Noe, Nov 26 2012