cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219694 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k nonrecurrent elements; n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 9, 24, 72, 96, 64, 120, 480, 900, 1000, 625, 720, 3600, 8640, 12960, 12960, 7776, 5040, 30240, 88200, 164640, 216090, 201684, 117649, 40320, 282240, 967680, 2150400, 3440640, 4128768, 3670016, 2097152, 362880, 2903040, 11430720, 29393280, 55112400, 79361856, 89282088, 76527504, 43046721
Offset: 1

Views

Author

Geoffrey Critzer, Nov 25 2012

Keywords

Comments

x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph. An element that is not recurrent is a nonrecurrent element.

Examples

			T(2,1) = 2 because we have 1->1 2->1; and 1->2 2->2.
:    1;
:    2,     2;
:    6,    12,     9;
:   24,    72,    96,     64;
:  120,   480,   900,   1000,    625;
:  720,  3600,  8640,  12960,  12960,   7776;
: 5040, 30240, 88200, 164640, 216090, 201684, 117649;
		

Crossrefs

Cf. A216971.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          (j-1)!*b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(add(
        b(j)*(x*n)^(n-j)*binomial(n-1, j-1), j=0..n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 22 2016
  • Mathematica
    nn=8;f[list_]:=Select[list,#>0&];t=Sum[n^(n-1)x^n y^n/n!,{n,1,nn}];Drop[Map[f,Range[0,nn]!CoefficientList[Series[1/(1-x Exp[t]),{x,0,nn}],{x,y}]],1]//Grid

Formula

E.g.f.: 1/(1-x*exp(A(x,y))), where A(x,y) = Sum_{n>=1} n^(n-1)*(y*x)^n/n!.