A219694 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k nonrecurrent elements; n>=1, 0<=k<=n-1.
1, 2, 2, 6, 12, 9, 24, 72, 96, 64, 120, 480, 900, 1000, 625, 720, 3600, 8640, 12960, 12960, 7776, 5040, 30240, 88200, 164640, 216090, 201684, 117649, 40320, 282240, 967680, 2150400, 3440640, 4128768, 3670016, 2097152, 362880, 2903040, 11430720, 29393280, 55112400, 79361856, 89282088, 76527504, 43046721
Offset: 1
Examples
T(2,1) = 2 because we have 1->1 2->1; and 1->2 2->2. : 1; : 2, 2; : 6, 12, 9; : 24, 72, 96, 64; : 120, 480, 900, 1000, 625; : 720, 3600, 8640, 12960, 12960, 7776; : 5040, 30240, 88200, 164640, 216090, 201684, 117649;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Cf. A216971.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( (j-1)!*b(n-j)*binomial(n-1, j-1), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(add( b(j)*(x*n)^(n-j)*binomial(n-1, j-1), j=0..n)): seq(T(n), n=1..10); # Alois P. Heinz, May 22 2016
-
Mathematica
nn=8;f[list_]:=Select[list,#>0&];t=Sum[n^(n-1)x^n y^n/n!,{n,1,nn}];Drop[Map[f,Range[0,nn]!CoefficientList[Series[1/(1-x Exp[t]),{x,0,nn}],{x,y}]],1]//Grid
Formula
E.g.f.: 1/(1-x*exp(A(x,y))), where A(x,y) = Sum_{n>=1} n^(n-1)*(y*x)^n/n!.
Comments