A219706 Total number of nonrecurrent elements in all functions f:{1,2,...,n}->{1,2,...,n}.
0, 0, 2, 30, 456, 7780, 150480, 3279234, 79775360, 2146962024, 63397843200, 2039301671110, 71007167075328, 2661561062560140, 106874954684266496, 4577827118698118250, 208369657238965616640, 10044458122057793060176, 511225397403604416921600
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..385
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->p+ [0, p[1]*j])((j-1)!*b(n-j)*binomial(n-1, j-1)), j=1..n)) end: a:= n-> (p-> n*p[1]-p[2])(add(b(j)*n^(n-j) *binomial(n-1, j-1), j=0..n)): seq(a(n), n=0..25); # Alois P. Heinz, May 22 2016
-
Mathematica
nn=20; f[list_] := Select[list,#>0&]; t=Sum[n^(n-1)x^n y^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[D[1/(1-x Exp[t]), y]/.y->1, {x,0,nn}], x]
-
Python
from math import comb def A219706(n): return (n-1)*n**n-(sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) - (0 if n&1 else comb(n,m:=n>>1)*m**n) if n else 0 # Chai Wah Wu, Apr 26 2023
Comments