cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219721 Expansion of (1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5).

Original entry on oeis.org

1, 8, 13, 20, 22, 29, 34, 41, 43, 50, 55, 62, 64, 71, 76, 83, 85, 92, 97, 104, 106, 113, 118, 125, 127, 134, 139, 146, 148, 155, 160, 167, 169, 176, 181, 188, 190, 197, 202, 209, 211, 218, 223, 230, 232, 239, 244, 251, 253, 260, 265, 272, 274, 281, 286, 293
Offset: 0

Views

Author

Bruno Berselli, Nov 26 2012

Keywords

Comments

Positive values of y in the Diophantine equation 21*x+1 = y^2; the corresponding values of x are given in A219391.
Equivalently, numbers that are congruent to {1,8,13,20} mod 21.
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc.

Crossrefs

Cf. A219391.

Programs

  • Magma
    I:=[1,8,13,20,22]; [n le 5 select I[n] else Self(n-1) +Self(n-4)-Self(n-5): n in [1..60]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    CoefficientList[Series[(1 + 7 x + 5 x^2 + 7 x^3 + x^4)/(1 - x - x^4 + x^5), {x, 0, 60}], x]
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 8, 13, 20, 22}, 60] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(coeff(taylor((1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5), x, 0, n), x, n), n, 0, 60);
    
  • PARI
    Vec((1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5)+O(x^60))
    

Formula

G.f.: (1+7*x+5*x^2+7*x^3+x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = -a(-n-1) = (42*n-6*i^(n*(n-1))-7*(-1)^n+5)/8 +2, where i=sqrt(-1).