cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219732 a(n) = (Product_{i=1..n-1} (2^i + 1)) modulo (2^n - 1).

Original entry on oeis.org

0, 0, 1, 0, 1, 9, 1, 0, 74, 33, 1, 1170, 1, 129, 15101, 0, 1, 187758, 1, 67650, 615700, 2049, 1, 4793490, 3247204, 8193, 262658, 4227330, 1, 480000312, 1, 0, 2458463380, 131073, 10787055277, 19903096980, 1, 524289, 67117058, 567489872400, 1, 2686322969514, 1
Offset: 1

Views

Author

Michel Marcus, Nov 26 2012

Keywords

Comments

E. Vantieghem proved that a(n) = 1 if and only if n is an odd prime. - Michel Marcus, Nov 26 2012

Crossrefs

Cf. A028362.

Programs

  • Mathematica
    Join[{0}, Table[m = 2^n - 1; prod = 1; Do[prod = Mod[prod*(2^i + 1), m], {i, n - 1}]; prod, {n, 2, 40}]] (* T. D. Noe, Nov 27 2012 *)
  • PARI
    a(m) = {for (n=1, m, print1(prod(j=1, n-1, 2^j+1) % (2^n - 1), ", "););}
    
  • PARI
    a(n)=if(n>2,my(m=2^n-1);lift(prod(i=1,n-1,Mod(2,m)^i+1)),0) \\ Charles R Greathouse IV, Nov 26 2012

Formula

a(n) = A028362(n) modulo (2^n - 1).