A219760 Martin Gardner's minimal no-3-in-a-line problem.
1, 4, 4, 4, 6, 6, 8, 9, 10, 10, 12, 12, 14, 15, 16, 17, 18, 18, 20, 21, 22, 23, 24, 25, 26, 26, 28, 29, 30
Offset: 1
Links
- Alec S. Cooper, Oleg Pikhurko, John R. Schmitt, and Gregory S. Warrington, Martin Gardner's minimum no-3-in-a-line problem, Amer. Math. Monthly, 121 (2014), 213-221 (on JSTOR), DOI: 10.4169/amer.math.monthly.121.03.213. Also on arXiv, arXiv:1206.5350 [math.CO], 2012-2014.
- Andy Huchala, Python program.
- Sandi Klavžar, James Tuite, and Ullas Chandran, The General Position Problem: A Survey, arXiv:2501.19385 [math.CO], 2025. See pp. 39, 58.
- Seunghwan Oh, John R. Schmitt, and Xianzhi Wang, Repeatedly applying the Combinatorial Nullstellensatz for Zero-sum Grids to Martin Gardner's minimum no-3-in-a-line problem, arXiv:2401.03119 [math.CO], 2024. See page 3.
- S. V. Ullas Chandran, Sandi Klavžar, and James Tuite, The General Position Problem: A Survey, arXiv:2501.19385 [math.CO], 2025. See pp. 41, 60.
- Gregory S. Warrington, Illustration for n=8
Extensions
Terms a(13)-a(18) from Rob Pratt, Mar 29 2014
Terms a(19)-a(27) from Rob Pratt, Sep 05 2014
a(28)-a(29) from Andy Huchala, Apr 20 2024
Comments