cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219766 Number of nonsquare simple perfect squared rectangles of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931307, 17633765, 63301415, 228130900, 825228950, 2994833413
Offset: 1

Views

Author

Stuart E Anderson, Nov 27 2012

Keywords

Comments

A squared rectangle is a rectangle dissected into a finite number of integer-sized squares. If no two of these squares are the same size then the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle or squared square. The order of a squared rectangle is the number of squares into which it is dissected. [Edited by Stuart E Anderson, Feb 02 2024]

References

Crossrefs

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A002839 = A@002839;
    A006983 = A@006983;
    a[n_] := A002839[[n]] - A006983[[n]];
    a /@ Range[24] (* Jean-François Alcover, Jan 13 2020 *)

Formula

a(n) = A002839(n) - A006983(n).
In "A Census of Planar Maps", p. 267, William Tutte gave a conjectured asymptotic formula for the number, a(n) of perfect squared rectangles of order n:
Conjectured: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)). [Corrected by Stuart E Anderson, Feb 02 2024]

Extensions

a(9)-a(24) enumerated by Gambini 1999, confirmed by Stuart E Anderson, Dec 07 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024