A219766 Number of nonsquare simple perfect squared rectangles of order n up to symmetry.
0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 22, 67, 213, 744, 2609, 9016, 31426, 110381, 390223, 1383905, 4931307, 17633765, 63301415, 228130900, 825228950, 2994833413
Offset: 1
Links
- Stuart E Anderson, Simple Perfect Squared Rectangles. [Nonsquare rectangles only]
- I. Gambini, Quant aux carrés carrelés, Thesis, Université de la Méditerranée Aix-Marseille II, 1999, p. 24.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- See A006983 and A217156 for further links.
Programs
-
Mathematica
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]]; A002839 = A@002839; A006983 = A@006983; a[n_] := A002839[[n]] - A006983[[n]]; a /@ Range[24] (* Jean-François Alcover, Jan 13 2020 *)
Formula
In "A Census of Planar Maps", p. 267, William Tutte gave a conjectured asymptotic formula for the number, a(n) of perfect squared rectangles of order n:
Conjectured: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)). [Corrected by Stuart E Anderson, Feb 02 2024]
Extensions
a(9)-a(24) enumerated by Gambini 1999, confirmed by Stuart E Anderson, Dec 07 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024
Comments