A219836 Triangular array counting derangements by number of descents.
1, 2, 0, 4, 4, 1, 8, 24, 12, 0, 16, 104, 120, 24, 1, 32, 392, 896, 480, 54, 0, 64, 1368, 5544, 5984, 1764, 108, 1, 128, 4552, 30384, 57640, 34520, 6048, 224, 0, 256, 14680, 153400, 470504, 495320, 180416, 19936, 448, 1
Offset: 2
Examples
Array begins 1 2, 0 4, 4, 1 8, 24, 12, 0 16, 104, 120, 24, 1 T(4,2) = 4 counts 2143, 3142, 3421, 4312.
Links
- Shishuo Fu, Z. Lin, J. Zeng, Two new unimodal descent polynomials, arXiv preprint arXiv:1507.05184 [math.CO], 2015-2019.
Crossrefs
Programs
-
Mathematica
u[n_, 0] := 0; u[n_, k_] /; k == n-1 := If [EvenQ[n], 1, 0]; u[n_, k_] /; 1 <= k <= n - 2 := (n - k) u[n - 1, k - 1] + (k + 1) u[n - 1, k]; Table[u[n, k], {n, 2, 10}, {k, n - 1}]
Formula
The g.f. F(x,y) = Sum_{n>=2,1<=k<=n-1}T(n,k)x^n/n!y^k satisfies the partial differential equation (1-xy) D_{x}F + (y^2-y) D_{y}F = F + 1 - e^(-xy). (Is there a closed form solution?)
Comments