A219874 Number of tilings of an n X n square using dominoes and straight (3 X 1) trominoes.
1, 0, 2, 14, 184, 9612, 1143834, 354859954, 295743829064, 631206895803116, 3541054185616706122, 51821077154605344550820, 1976225122734369352127065686, 196913655491597719598898811003348, 51179690353659852099434654264900753288, 34716223657627061096793572212632925410608268
Offset: 0
Keywords
Examples
a(3) = 14, because there are 14 tilings of a 3 X 3 square using dominoes and straight (3 X 1) trominoes: ._____. ._____. ._____. ._____. .___._. .___._. .___._. | | | | | | | | | |___| | |___| | | | | |___| | |___| | | | | | | |_|_| | |___| | | | | |_|_| | |___| | | | | | |_|_|_| |_|___| |_|___| |_|_|_| |___|_| |___|_| |_|_|_| ._____. ._____. ._____. ._____. ._____. ._____. ._____. |_____| |_____| |_____| |_____| | |___| | | | | |___| | |_____| | |___| | | | | |___| | |_|___| |_|_|_| |___|_| |_____| |_|___| |_|_|_| |___|_| |_____| |_____| |_____| .
Links
- Kai Liang, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.
Extensions
a(12) from Alois P. Heinz, Sep 30 2014