A219925 Number of tilings of a 6 X n rectangle using integer-sided square tiles.
1, 1, 13, 60, 348, 1916, 10668, 59257, 329350, 1830234, 10171315, 56525022, 314128014, 1745708992, 9701463927, 53914132251, 299618062228, 1665073290365, 9253344266757, 51423790446062, 285778433090830, 1588162056821687, 8825923956549044, 49048479247236561
Offset: 0
Examples
a(2) = 13, because there are 13 tilings of a 6 X 2 rectangle using integer-sided square tiles: ._._. .___. ._._. ._._. ._._. ._._. |_|_| | | |_|_| |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |_|_| |_|_| |_|_| |___| | | |_|_| |_|_| |_|_| |_|_| |_|_| |___| .___. .___. .___. ._._. ._._. ._._. .___. | | | | | | |_|_| |_|_| |_|_| | | |___| |___| |___| | | | | |_|_| |___| | | |_|_| |_|_| |___| |___| | | | | |___| | | |_|_| | | |_|_| |___| |___| |_|_| |___| | | |___| | | | | | | |_|_| |_|_| |___| |_|_| |___| |___| |___|
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
gf:= -(2*x^9 +3*x^8 +2*x^7 -3*x^6 -7*x^5 -4*x^4 -3*x^3 +5*x^2 +2*x -1) / (2*x^15 +7*x^14 +12*x^13 +6*x^12 -18*x^11 -13*x^10 -8*x^9 -27*x^8 -32*x^7 +x^6 +40*x^5 +34*x^4 -3*x^3 -15*x^2 -3*x +1): a:= n-> coeff (series (gf, x, n+1), x, n): seq (a(n), n=0..40);
Formula
G.f.: see Maple program.