cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A219924 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Comments

For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239.

Examples

			A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  2,   3,    5,    8,    13,     21, ...
  1,  1,  3,   6,   13,   28,    60,    129, ...
  1,  1,  5,  13,   40,  117,   348,   1029, ...
  1,  1,  8,  28,  117,  472,  1916,   7765, ...
  1,  1, 13,  60,  348, 1916, 10668,  59257, ...
  1,  1, 21, 129, 1029, 7765, 59257, 450924, ...
		

Crossrefs

Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929.
Main diagonal gives A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:
    b:= proc(n, l, ll) local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],
                [ll[],[k,1+i-k]])
             od; s
          fi
        end:
    A:= (n, k)-> b(k, [0$n], []):
    A(5,5);
    # In each list [a,b] means put a square with side length b at
    leftmost possible position with upper corner in row a.  For example
    [[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives:
     ___.___.
    |     |   |
    |     |_|
    |___|_|_|
    |   |   |_|
    |_|___|_|
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *)

A359019 Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 21, 39, 82, 163, 347, 717, 1533, 3232, 6927, 14748, 31645, 67690, 145322, 311535, 668997, 1435645, 3083301, 6619842, 14218066, 30533005, 65580338, 140847132, 302522253, 649759735, 1395611508, 2997573501, 6438470626, 13829057884, 29703388721, 63799607283, 137035047576, 294336860797, 632205714741
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Examples

			a(4) is 6 because of:
  +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
  | | | | |     | |   | | |   | | |   | | | | | |
  +-+-+-+ +     + +   +-+ +   +-+ +   +-+ +-+-+-+
  | | | | |     | |   | | |   | | |   | | |   | |
  +-+-+-+ +     + +-+-+-+ +-+-+-+ +-+-+-+ +   +-+
  | | | | |     | |   | | | |   | | | | | |   | |
  +-+-+-+ +-+-+-+ +   +-+ +-+   + +-+-+-+ +-+-+-+
  | | | | |     | |   | | | |   | | | | | | | | |
  +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
		

Crossrefs

Column k = 3 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Cf. A000930.

Formula

For n <= 1, a(n)=1;
otherwise for odd n > 1, a(n)=(A002478(n) + A000930(n) + 2 * A002478((n - 1) / 2) + 2 * A002478((n - 3) / 2)) / 4
and for even n, a(n)=(A002478(n) + A000930(n) + 2 * A002478((n - 2) / 2) + 2 * A002478(n / 2)) / 4
Alternatively, from Walter Trump:
For n <= 1, a(n)=1;
otherwise for odd n > 1, a(n)=(A000930(2n) + A000930(n) + 2 * A000930(n - 1) + 2 * A000930(n - 3)) / 4
and for even n, a(n)=(A000930(2n) + 2 * A000930(n - 2) + 3 * A000930(n)) / 4

A359020 Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Examples

			a(3) is 6 because of:
  +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
  | | | | |     | |   | | |   | | |   | | | | | |
  +-+-+-+ +     + +   +-+ +   +-+ +   +-+ +-+-+-+
  | | | | |     | |   | | |   | | |   | | |   | |
  +-+-+-+ +     + +-+-+-+ +-+-+-+ +-+-+-+ +   +-+
  | | | | |     | |   | | | |   | | | | | |   | |
  +-+-+-+ +-+-+-+ +   +-+ +-+   + +-+-+-+ +-+-+-+
  | | | | |     | |   | | | |   | | | | | | | | |
  +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
		

Crossrefs

Column k = 4 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

Formula

For even n > 4
a(n) = (A054856(n) + compo(n) + 4 * A054856((n - 2) / 2) +
2 * A054856((n - 4) / 2) + 2 * A054856(n / 2) +
2 * Sum_{k=0..(n - 2) / 2} (A054856(k))) / 4
For odd n > 4
a(n) = (A054856(n) + compo(n) + 2 * A054856((n - 3) / 2) +
2 * A054856((n - 1) / 2) + 2 * Sum_ {k=0..(n - 3) / 2} (A054856(k))) / 4
Where compo(n) is the number of distinct compositions of n as a sum of 1, 2, (1+1) and 4.

A359021 Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Examples

			a(2) is 5 because of:
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
  | | | |   | |   | |   | |   |
  +-+-+ +-+-+ +   + +   + +-+-+
  | | | |   | |   | |   | |   |
  +-+-+ +   + +-+-+ +-+-+ +   +
  | | | |   | |   | | | | |   |
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
  | | | |   | |   | | | | | | |
  +-+-+ +   + +   + +-+-+ +-+-+
  | | | |   | |   | | | | | | |
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
		

Crossrefs

Column k = 5 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Cf. A079975.

Formula

For even n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857(n/2) + 2* fixed_md(n/2) + 2*A054857((n-4)/2) + 4*A054857((n-2)/2) + 2* (A054857((n/2)-1) + fixed_md((n/2)-1)))/4.
For odd n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857((n-1)/2) + 4*A054857((n-3)/2) + 2*fixed_md((n-3)/2) + 2*A054857((n-5)/2) + 2*fixed_md((n-1)/2))/4.
where
fixed_md(1)=1, fixed_md(2)=3, fixed_md(3)=15 and for n > 3, fixed_md(n) = A054857(n-1) + A054857(n-2) + fixed_md(n-2)+ fixed_md(n-1) + 2*A054857(n-3) + fixed_md(n-3).

A359022 Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 9, 21, 115, 521, 1494, 15129, 83609, 459957, 2551794, 14150081, 78597739
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 6 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A359023 Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, 6542578, 49828415
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 7 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A359024 Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 8 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A359025 Number of inequivalent tilings of a 9 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 30, 163, 2403, 32097, 459957, 6542578, 93604244
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 9 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A359026 Number of inequivalent tilings of a 10 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 51, 347, 7048, 130125, 2551794, 49828415
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 10 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A226549 Number of squares in all tilings of a 6 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 6, 96, 654, 4938, 33502, 221672, 1426734, 9014839, 56128696, 345447208, 2106033948, 12739126739, 76548375758, 457375097789, 2719454021744, 16100269337597, 94961606031670, 558226473615469, 3271710478901046, 19123726111508773, 111510459865449832
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=6 of A226545.
Cf. A219925.

Formula

G.f.: (4*x^23 +60*x^22 +203*x^21 +308*x^20 -35*x^19 -660*x^18 -964*x^17 -612*x^16 +239*x^15 +344*x^14 +683*x^13 +686*x^12 +1156*x^11 +1944*x^10 -341*x^9 -2280*x^8 -1775*x^7 +588*x^6 +1550*x^5 +70*x^4 -498*x^3 -48*x^2 +60*x+6)*x / (2*x^15 +7*x^14 +12*x^13 +6*x^12 -18*x^11 -13*x^10 -8*x^9 -27*x^8 -32*x^7 +x^6 +40*x^5 +34*x^4 -3*x^3 -15*x^2 -3*x+1)^2.
Showing 1-10 of 10 results.