cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219930 n such that phi(n) represents a new lower bound for the phi function.

Original entry on oeis.org

1, 3, 8, 14, 20, 36, 48, 66, 70, 96, 126, 132, 156, 240, 252, 300, 336, 450, 480, 540, 660, 690, 714, 870, 900, 1080, 1320, 1470, 1530, 1710, 1950, 2340, 2940, 2970, 3360, 3780, 4200, 4830, 5040, 5610, 5670, 5880, 6270, 7140, 7350, 7410, 8400, 9660, 9870
Offset: 1

Views

Author

Jon Perry, Dec 01 2012

Keywords

Comments

Conjecture: If n is in the sequence, then the sequence contains an infinite number of multiples of n.
Conjecture: Except for 1 and 3, all members of the sequence are even. If n is odd, it cannot be squarefree.
Conjecture: There does not exist N such that for all n > N, a(n) is divisible by 30.
A036912 gives the values of the phi function at these n.

Examples

			phi(1)=1, and for n>=1, phi(n)>=1.
phi(3)=2, and for n>=3, phi(n)>=2.
phi(8)=4, and for n>=8, phi(n)>=4.
phi(14)=6, and for n>=14, phi(n)>=6.
		

Crossrefs

Programs

  • JavaScript
    p = new Array();
    p[0] = NaN;
    p[1] = 2;
    p[2] = 3;
    mj = 2;
    for (k = 3; k < 50000; k += 2) makeprimes(k);
    function makeprimes(i) {
    for (j = 2; j <= mj; j++)
    if (i%p[j] == 0) return false;
    p[++mj] = i;
    return true;
    }
    function primeFactorize(n) {
    var pf = new Array(), pc, pfc;
    pf[0] = new Array();
    pf[1] = new Array();
    pc = 1;
    pfc = -1;
    while (n != 1) {
    if (n%p[pc] == 0) {pfc++; pf[0][pfc] = p[pc]; pf[1][pfc] = 0;}
    while (n%p[pc] == 0) {n /= p[pc]; pf[1][pfc]++;}
    pc++;
    }
    return pf;
    }
    function phi(n) {
    var f, i, v;
    v = 1;
    f = primeFactorize(n);
    for (i = 0; i < f[0].length; i++) v *= Math.pow(f[0][i], f[1][i] - 1)*(f[0][i] - 1);
    return v;
    }
    function isMin(arr, ik, k) {
    var i, im;
    im = true;
    for (i = ik; i < arr.length; i++) if (arr[i] < k) {im = false; break;}
    return im;
    }
    phiV = new Array();
    for (k = 1; k < 50000; k++) phiV[k] = phi(k);
    cm = 1;
    for (n = 1; n < 3000; n++) if (phiV[n] > cm && isMin(phiV, n, phiV[n])) {cm = phiV[n]; document.write(n + ", ");}
  • Mathematica
    nn = 8!; t = Table[EulerPhi[n], {n, nn}]; min = Infinity; t2 = {}; Do[If[t[[n]] <= min, AppendTo[t2, {n, t[[n]]}]; min = t[[n]]], {n, Length[t], 1, -1}]; t2 = Reverse[t2]; t3 = {}; mx = 0; Do[If[i[[2]] > mx, mx = i[[2]]; AppendTo[t3, i[[1]]]], {i, t2}]; t3 (* T. D. Noe, Dec 04 2012 *)