A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.
1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
Offset: 1
Examples
log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13). log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
Links
- Peter Luschny, Table of n, a(n) for n = 1..300
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Programs
-
Maple
Coeff_list := proc(len) local n; asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3); subs(n=1/n,simplify(convert(%,polynom))); [seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end: A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
-
Mathematica
max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *) a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)
Formula
a(n) = denominator(2*E(2*n-1, 1)/(2*n-1)) where E(n, x) is the Euler polynomial. - Peter Luschny, Apr 03 2014
Warning: a(n) != (2*n-1)*2^valuation(n, 2). This was mistakenly assumed several times in the past, see A385054. - Peter Luschny, Jun 17 2025
Extensions
Edited and incorrect entries removed by Georg Fischer and Peter Luschny, Jun 16 2025
Comments