cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.

Original entry on oeis.org

1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
Offset: 1

Views

Author

Peter Luschny, Dec 01 2012

Keywords

Comments

An asymptotic expansion of the logarithm of the central binomial (A000984) for n>0 is given by log(binomial(2*n,n)) ~ (n*log(16)-log(Pi)-log(n) + sum_{k>=1}((-4)^(-k)*A002425(k)/a(k)*n^(1-2*k)))/2.
An asymptotic expansion of the logarithm of the swinging factorial (A056040) for n>1 is given by log(swing(n)) ~ (n*log(4)-log(Pi)-(-1)^n*(log(n/2) - (1/2)*sum_{k>=1}((-1)^k*A002425(k)/a(k)*n^(1-2*k))))/2.

Examples

			log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
		

Crossrefs

Programs

  • Maple
    Coeff_list := proc(len) local n;
    asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3);
    subs(n=1/n,simplify(convert(%,polynom)));
    [seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end:
    A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
  • Mathematica
    max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *)
    a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)

Formula

a(n) = denominator(2*E(2*n-1, 1)/(2*n-1)) where E(n, x) is the Euler polynomial. - Peter Luschny, Apr 03 2014
Warning: a(n) != (2*n-1)*2^valuation(n, 2). This was mistakenly assumed several times in the past, see A385054. - Peter Luschny, Jun 17 2025

Extensions

Edited and incorrect entries removed by Georg Fischer and Peter Luschny, Jun 16 2025