cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239739 a(n) = n*4^(2*n+1).

Original entry on oeis.org

0, 64, 2048, 49152, 1048576, 20971520, 402653184, 7516192768, 137438953472, 2473901162496, 43980465111040, 774056185954304, 13510798882111488, 234187180623265792, 4035225266123964416, 69175290276410818560, 1180591620717411303424, 20070057552195992158208
Offset: 0

Views

Author

Peter Luschny, Mar 26 2014

Keywords

Comments

Appears in asymptotic expansions of the logarithm of the central binomial and the Catalan numbers. (See Kessler and Schiff, page 2.)

Crossrefs

Programs

  • Magma
    [n*4^(2*n+1): n in [0..25]]; // Vincenzo Librandi, Apr 25 2014
  • Mathematica
    CoefficientList[Series[64 x /(1 - 16 x)^2, {x, 0, 20}], x] (* Vincenzo Librandi, Apr 25 2014 *)
    LinearRecurrence[{32,-256},{0,64},20] (* Harvey P. Dale, May 06 2021 *)

Formula

G.f.: 64*x / (1 - 16*x)^2. [Bruno Berselli, Mar 26 2014]
(n-1)*a(n) - 16*n*a(n-1) = 0. [Bruno Berselli, Mar 26 2014]
a(n) = n*A013709(n). - Michel Marcus, Jan 30 2016

A385054 Numbers k such that (2*k-1)*2^valuation(k, 2) != denominator(2*Euler(2*k-1, 1)/(2*k-1)).

Original entry on oeis.org

60, 140, 196, 280, 295, 332, 390, 468, 574, 581, 604, 605, 621, 740, 760, 826, 876, 935, 1012, 1070, 1148, 1183, 1185, 1210, 1225, 1240, 1269, 1278, 1284, 1376, 1420, 1484, 1526, 1535, 1556, 1690, 1692, 1715, 1828, 1906, 1908, 1910, 1914, 1928, 1935, 1964, 2000
Offset: 1

Views

Author

Peter Luschny, Jun 16 2025

Keywords

Crossrefs

Cf. A219931.

Programs

  • Maple
    a := n -> ifelse((2*n-1)*2^ordp(n,2) = denom(2*euler(2*n-1,1)/(2*n-1)), NULL, n):
    seq(a(n), n = 1..1000);
  • Mathematica
    Select[Range[1000], Denominator[2*EulerE[2*# - 1, 1]/(2*# - 1)] != (2*# - 1)*2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 16 2025 *)
Showing 1-2 of 2 results.