A219975 Number of tilings of an n X n square using straight (3 X 1) trominoes and 2 X 2 tiles.
1, 0, 1, 2, 3, 28, 267, 2744, 66653, 2766100, 141365332, 13305552648, 2149055591278, 493880634209398, 192321197859269019, 124351154502319720238, 122893248485909264026734, 199405053536180281080458422, 527809383857797224536981601752
Offset: 0
Examples
a(4) = 3, because there are 3 tilings of a 4 X 4 square using straight (3 X 1) trominoes and 2 X 2 tiles: ._._____. ._____._. ._._._._. | |_____| |_____| | | . | . | | | . | | | | . | | |___|___| |_|___| | | |___|_| | . | . | |_____|_| |_|_____| |___|___| .
Links
- Kai Liang, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.
Extensions
a(12) from Alois P. Heinz, Sep 24 2014
a(13)-a(18) from Martin Fuller, Apr 09 2025