A220074 Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.
1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, -1, 1; 1, -2, 2, 0; 1, -3, 4, -2, 1; 1, -4, 7, -6, 3, 0; 1, -5, 11, -13, 9, -3, 1; 1, -6, 16, -24, 22, -12, 4, 0; 1, -7, 22, -40, 46, -34, 16, -4, 1; 1, -8, 29, -62, 86, -80, 50, -20, 5, 0; 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1; 1, -10, 46, -128, 239, -314, 296, -200, 95, -30, 6, 0; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- OEIS Wiki, Autosequence
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
-
Magma
[[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
-
Maple
A059259A := proc(n,k) 1/(1+y)/(1-x-y) ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,k) ; end proc: A059259 := proc(n,k) A059259A(n-k,k) ; end proc: A220074 := proc(i,j) (-1)^j*A059259(i,j) ; end proc: # R. J. Mathar, May 14 2014
-
Mathematica
Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
-
PARI
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))}; for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
-
Sage
[[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
Formula
Sum_{k=0..n} T(n,k) = 1.
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n-k+i, i).
T(2*n,n) = (-1)^n*A026641(n).
T(n,k) = (-1)^k*A059259(n,k).
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) - T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014
Extensions
Definition and comments clarified by Li-yao Xia, May 15 2014
Comments