cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220164 Number of simple squared squares of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 5, 15, 19, 57, 72, 275, 499, 1778, 3705, 11318, 24525, 65906, 135599, 333938, 687969, 1681759, 3652677
Offset: 1

Views

Author

Stuart E Anderson, Dec 06 2012

Keywords

Comments

A squared rectangle is a rectangle dissected into a finite number, two or more, of squares, called the elements of the dissection. If no two of these squares have the same size the squared rectangle is called perfect, otherwise it is imperfect. The order of a squared rectangle is the number of constituent squares. The case in which the squared rectangle is itself a square is called a squared square. The dissection is simple if it contains no smaller squared rectangle, otherwise it is compound. This sequence counts both perfect and imperfect simple squared squares up to symmetry.

References

Crossrefs

Formula

a(n) = A006983(n) + A002962(n).

Extensions

a(13)-a(29) from Stuart E Anderson, Dec 07 2012
Clarified some definitions in comments and added a(30) - Stuart E Anderson, Jun 03 2013
a(31), a(32) added by Stuart E Anderson, Sep 30 2013