A220178 Triangle where the g.f. for row n equals d^n/dx^n (1+x+x^2)^n / n! for n>=0, as read by rows.
1, 1, 2, 3, 6, 6, 7, 24, 30, 20, 19, 80, 150, 140, 70, 51, 270, 630, 840, 630, 252, 141, 882, 2520, 4200, 4410, 2772, 924, 393, 2856, 9576, 19320, 25410, 22176, 12012, 3432, 1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870, 3139, 29070, 126720, 341880, 630630, 828828, 780780, 514800, 218790, 48620
Offset: 0
Examples
Triangle begins: 1; 1, 2; 3, 6, 6; 7, 24, 30, 20; 19, 80, 150, 140, 70; 51, 270, 630, 840, 630, 252; 141, 882, 2520, 4200, 4410, 2772, 924; 393, 2856, 9576, 19320, 25410, 22176, 12012, 3432; 1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870; ... The g.f. for column k>=0 equals the central binomial coefficient C(2*k,k) times x^k*y^k*G(x)^(2*k+1) where G(x) = 1/sqrt(1-2*x-3*x^2) is the g.f. of the central trinomial coefficients A002426. The g.f. for row n is d^n/dx^n (1+x+x^2)^n/n!, which begins: n=0: 1; n=1: 1 + 2*x; n=2: 3 + 6*x + 6*x^2; n=3: 7 + 24*x + 30*x^2 + 20*x^3; n=4: 19 + 80*x + 150*x^2 + 140*x^3 + 70*x^4; n=5: 51 + 270*x + 630*x^2 + 840*x^3 + 630*x^4 + 252*x^5; n=6: 141 + 882*x + 2520*x^2 + 4200*x^3 + 4410*x^4 + 2772*x^5 + 924*x^6; ...
Links
- Ivan Neretin, Table of n, a(n) for n = 0..5150 (rows 0..100)
Programs
-
Mathematica
Flatten@Table[CoefficientList[D[(1 + x + x^2)^n/n!, {x, n}], x], {n, 0, 9}] (* Ivan Neretin, Jun 22 2019 *)
-
PARI
{T(n,k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)),n,x),k,y)} for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
row(n) = my(p=(1+x+x^2)^n / n!); for (k=1, n, p = deriv(p)); Vecrev(p); \\ Michel Marcus, Jun 22 2019
Formula
G.f.: A(x,y) = 1 / sqrt(1-2*x-3*x^2 - 4*x*y).
G.f.: A(x,y) = Sum_{k>=0} binomial(2*k,k) * x^k*y^k / (1-2*x-3*x^2)^(k+1/2).
First column is the central trinomial coefficients (A002426).
Main diagonal is the central binomial coefficients (A000984).
Row sums form the central coefficients of (1+3*x+3*x^2)^n (A122868).