cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220178 Triangle where the g.f. for row n equals d^n/dx^n (1+x+x^2)^n / n! for n>=0, as read by rows.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 7, 24, 30, 20, 19, 80, 150, 140, 70, 51, 270, 630, 840, 630, 252, 141, 882, 2520, 4200, 4410, 2772, 924, 393, 2856, 9576, 19320, 25410, 22176, 12012, 3432, 1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870, 3139, 29070, 126720, 341880, 630630, 828828, 780780, 514800, 218790, 48620
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Examples

			Triangle begins:
1;
1, 2;
3, 6, 6;
7, 24, 30, 20;
19, 80, 150, 140, 70;
51, 270, 630, 840, 630, 252;
141, 882, 2520, 4200, 4410, 2772, 924;
393, 2856, 9576, 19320, 25410, 22176, 12012, 3432;
1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870; ...
The g.f. for column k>=0 equals the central binomial coefficient C(2*k,k) times x^k*y^k*G(x)^(2*k+1) where G(x) = 1/sqrt(1-2*x-3*x^2) is the g.f. of the central trinomial coefficients A002426.
The g.f. for row n is d^n/dx^n (1+x+x^2)^n/n!, which begins:
n=0: 1;
n=1: 1 + 2*x;
n=2: 3 + 6*x + 6*x^2;
n=3: 7 + 24*x + 30*x^2 + 20*x^3;
n=4: 19 + 80*x + 150*x^2 + 140*x^3 + 70*x^4;
n=5: 51 + 270*x + 630*x^2 + 840*x^3 + 630*x^4 + 252*x^5;
n=6: 141 + 882*x + 2520*x^2 + 4200*x^3 + 4410*x^4 + 2772*x^5 + 924*x^6; ...
		

Crossrefs

Cf. A002426 (first column), A000984 (main diagonal), A122868 (row sums).

Programs

  • Mathematica
    Flatten@Table[CoefficientList[D[(1 + x + x^2)^n/n!, {x, n}], x], {n, 0, 9}] (* Ivan Neretin, Jun 22 2019 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)),n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    row(n) = my(p=(1+x+x^2)^n / n!); for (k=1, n, p = deriv(p)); Vecrev(p); \\ Michel Marcus, Jun 22 2019

Formula

G.f.: A(x,y) = 1 / sqrt(1-2*x-3*x^2 - 4*x*y).
G.f.: A(x,y) = Sum_{k>=0} binomial(2*k,k) * x^k*y^k / (1-2*x-3*x^2)^(k+1/2).
First column is the central trinomial coefficients (A002426).
Main diagonal is the central binomial coefficients (A000984).
Row sums form the central coefficients of (1+3*x+3*x^2)^n (A122868).