cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220183 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k triple descents (n>=0,0<=k<=n-3). We say that i is a triple descent of a permutation p if p(i) > p(i+1) > p(i+2) > p(i+3).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 111, 8, 1, 642, 67, 10, 1, 4326, 602, 99, 12, 1, 33333, 5742, 1093, 137, 14, 1, 288901, 59504, 12425, 1852, 181, 16, 1, 2782082, 666834, 151635, 24970, 3029, 231, 18, 1, 29471046, 8054684, 1981499, 355906, 48455, 4902, 287, 20, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 12 2012

Keywords

Comments

Row sums = n!.
T(n,0) = A117158.

Examples

			:     1;
:     1;
:     2;
:     6;
:    23,    1;
:   111,    8,    1;
:   642,   67,   10,   1;
:  4326,  602,   99,  12,  1;
: 33333, 5742, 1093, 137, 14, 1;
T(5,1) = 8 because we have: (4,5,3,2,1), (3,5,4,2,1), (2,5,4,3,1), (5,4,3,1,2), (1,5,4,3,2), (5,4,2,1,3), (5,3,2,1,4), (4,3,2,1,5).
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, 1), j=1..u)+
          add(b(u+j-1, o-j, [2, 3, 3][t])*`if`(t=3, x, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 29 2013
  • Mathematica
    nn=10; u=y-1; a=Apply[Plus, Table[Normal[Series[y x^4/(1-y x - y x^2-y x^3), {x,0,nn}]][[n]]/(n+3)!, {n,1,nn-3}]]/.y->u; Range[0,nn]! CoefficientList[Series[1/(1-x-a), {x,0,nn}], {x,y}]//Grid

Formula

E.g.f.: 1/(1 - x - Sum_{k,n} I(n,k)(y - 1)^k*x^n/n!) where I(n,k) is the coefficient of y^k*x^n in the ordinary generating function expansion of y x^4/(1 - y*x - y*x^2 - y*x^3) See Flajolet and Sedgewick reference in Links section.