A220221 Odd positive integers k such that k^2 has at most three nonzero binary digits.
1, 3, 5, 7, 9, 17, 23, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Michael A. Bennett, Perfect powers with few ternary digits, INTEGERS 12A (2012), #A3.
- László Szalay, The equations 2^n+-2^m+-2^l=z^2, Indag. Math. 13 (2002) 131-142.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A212191 (exactly 3 powers).
Programs
-
Magma
I:=[1,3,5,7,9,17,23,33,65,129]; [n le 10 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 07 2014
-
Mathematica
Select[Range[1, 1000000, 2], Total[IntegerDigits[#^2, 2]] <= 3 &] (* T. D. Noe, Dec 07 2012 *) CoefficientList[Series[(12 x^8 - 2 x^7 - 10 x^6 + 4 x^5 - 2 x^4 - 2 x^3 - 2 x^2 + 1) / ((x - 1) (2 x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 07 2014 *)
-
PARI
is(n)=n%2 && hammingweight(n^2)<4 \\ Charles R Greathouse IV, Dec 10 2012
-
PARI
Vec(x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Nov 06 2014
Formula
a(n) = 3*a(n-1)-2*a(n-2) for n>9. - Colin Barker, Nov 06 2014
G.f.: x*(12*x^8-2*x^7-10*x^6+4*x^5-2*x^4-2*x^3-2*x^2+1) / ((x-1)*(2*x-1)). - Colin Barker, Nov 06 2014
Extensions
Extended by T. D. Noe, Dec 07 2012
Comments