cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220462 Chebyshev numbers C_v(n) for v=3/2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(2*x/3)>=n*log(x), where theta(x) = sum_{prime p<=x} log p.

Original entry on oeis.org

13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, 263, 307, 311, 347, 367, 379, 431, 433, 443, 449, 479, 487, 541, 563, 587, 599, 607, 641, 643, 673, 739, 757, 787, 797, 809, 823, 827, 859, 937, 967, 997, 1019, 1031, 1039, 1049, 1061, 1087
Offset: 1

Views

Author

Keywords

Comments

All terms are primes.
Up to a(97)=2333, only four terms of the sequence (a(33)=643, a(34)=673, a(76)=1721 and a(77)=1741) are not (3/2)-Ramanujan numbers as in Shevelev's link; up to 2333, the only (3/2)-Ramanujan numbers missing from the sequence are 2, 617, 653, 709, 1709, 1733, and 1747.

Crossrefs

Cf. A220293.

Programs

  • Mathematica
    (* Assuming range of x is from a(n) to 2*a(n) *) theta[x_] := Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}]; Clear[a]; a[0] = 2; a[n_] := a[n] = (t = Table[{an, x >= an && theta[x] - theta[2*(x/3)] >= n*Log[x]}, {an, a[n - 1], Prime[4*(n + 1)]}, {x, an, 2*an}]; sp = t // Flatten[#, 1] & // Sort // Split[#, #1[[1]] == #2[[1]] &] &; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 51}] (* Jean-François Alcover, Jan 24 2013 *)

Formula

a(n)<=prime(4*(n+1)).

A220463 Chebyshev numbers C_v(n) for v=1.2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(5*x/6)>=n*log(x), where theta(x)=sum_{prime p<=x}log p.

Original entry on oeis.org

59, 137, 139, 149, 223, 241, 347, 353, 383, 389, 563, 569, 593, 613, 631, 641, 821, 823, 853, 929, 937, 1009, 1013, 1061, 1069, 1277, 1279, 1361, 1427, 1433, 1481, 1487, 1597, 1601, 1607, 1609, 1613, 1973, 1979, 1997, 2011, 2081, 2083, 2113, 2203, 2269, 2273, 2297
Offset: 1

Views

Author

Vladimir Shevelev, Charles R Greathouse IV and Peter J. C. Moses, Dec 15 2012

Keywords

Comments

All terms are primes.
Up to a(98)=5381, all terms are 1.2-Ramanujan numbers as in Shevelev's link; up to 5381, the only missing 1.2-Ramanujan numbers are 29 and 5171.

Crossrefs

Cf. A220293, 220462.

Programs

  • Mathematica
    k=5; xs=Table[{m,Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m,{x,f[(k+1) m]-1},AccuracyGoal->Infinity,PrecisionGoal->20,WorkingPrecision->100]]},{m,1,101}]; Table[{m,1+NestWhile[#-1&,xs[[m]][[2]],(1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1,#1],PrimeQ]]&)[#]>m&]},{m,1,100}] (* Peter J. C. Moses, Dec 20 2012 *)

Formula

a(n)<=prime(11*(n+1)).

A220474 Chebyshev numbers C_v(n) for v=10/9: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(9*x/10)>=n*log(x), where theta(x)=sum_{prime p<=x}log p.

Original entry on oeis.org

223, 227, 269, 349, 359, 569, 587, 593, 739, 809, 857, 991, 1009, 1019, 1259, 1481, 1483, 1487, 1489, 1861, 1867, 1993, 1997, 2003, 2027, 2267, 2269, 2657, 2671, 2687, 2689, 2699, 3181, 3187, 3307, 3313, 3319, 3323, 3457, 3461, 3491, 3527, 3529, 3581, 3623, 3769, 4049, 4201, 4391, 4481
Offset: 1

Views

Author

Keywords

Comments

All terms are primes.
Up to a(99)=9029, all terms are (10/9)-Ramanujan numbers as in Shevelev's link; up to 9029, the only missing (10/9)-Ramanujan number is 127.

Crossrefs

Programs

  • Mathematica
    k=9; xs=Table[{m,Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m,{x,f[(k+1) m]-1},AccuracyGoal->Infinity,PrecisionGoal->20,WorkingPrecision->100]]},{m,1,101}]; Table[{m,1+NestWhile[#-1&,xs[[m]][[2]],(1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1,#1],PrimeQ]]&)[#]>m&]},{m,1,100}] (* Peter J. C. Moses, Dec 20 2012 *)
    (* Assuming range of x is from a(n) to 2*a(n) *) Clear[a, theta]; theta[x_] := theta[x] = Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}] // N; a[0] = 211(* just to speed-up computation *); a[n_] := a[ n] = (t = Table[an = Prime[pi]; Table[{an, x >= an && theta[x] - theta[9*x/10] >= n*Log[x]}, {x, an, 2*an}], {pi, PrimePi[a[n-1]], 31*(n+1)}]; sp = t // Flatten[#, 1]& // Sort // Split[#, #1[[1]] == #2[[1]]& ]&; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 11 2013 *)

Formula

a(n)<=prime(31*(n+1)).

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A220475 Chebyshev numbers C_v(n) for v=15/14: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(14*x/15)>=n*log(x), where theta(x)=sum_{prime p<=x} log p.

Original entry on oeis.org

307, 347, 563, 569, 733, 821, 1427, 1429, 1433, 1439, 1447, 1481, 1867, 1931, 1973, 2657, 2659, 2663, 2671, 2683, 3187, 3191, 3313, 3319, 3323, 3461, 3511, 3517, 4001, 4217, 4231, 4597, 4621, 4783, 5387, 5393, 5413, 5417, 5477, 5501, 5639, 5641, 5651, 6067, 6311, 6823, 6857, 7477, 7523, 7537
Offset: 1

Views

Author

Keywords

Comments

All terms are primes.
Up to a(100)=15013, all terms are (15/14)-Ramanujan numbers as in Shevelev's link, except for 821; the sequence is missing (15/4)-Ramanujan numbers 127 and 1423 and no others up to 15013.

Crossrefs

Programs

  • Mathematica
    k=14; xs=Table[{m,Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m,{x,f[(k+1) m]-1},AccuracyGoal->Infinity,PrecisionGoal->20,WorkingPrecision->100]]},{m,1,101}]; Table[{m,1+NestWhile[#-1&,xs[[m]][[2]],(1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1,#1],PrimeQ]]&)[#]>m&]},{m,1,100}] (* Peter J. C. Moses, Dec 20 2012 *)
    (* Assuming range of x is from a(n) to 2*a(n) *) Clear[a, theta]; theta[x_] := theta[x] = Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}] // N; a[0] = 293(* just to speed-up computation *); a[6] = 821(* the exception noted in comments *); a[n_] := a[ n] = (t = Table[an = Prime[pi]; Table[{an, x >= an && theta[x] - theta[14*x/15] >= n*Log[x]}, {x, an, 2*an}], {pi, PrimePi[a[n - 1]], 32*(n+1)}]; sp = t // Flatten[#, 1] & // Sort // Split[#, #1[[1]] == #2[[1]] &] &; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 11 2013 *)

Formula

a(n) <= prime(32*(n+1)).

Extensions

More terms from Jean-François Alcover, Feb 11 2013
Showing 1-4 of 4 results.