A220353 G.f.: Sum_{n>=0} (1 - (1-x)^n)^n.
1, 1, 4, 23, 176, 1697, 19805, 271669, 4285195, 76430799, 1521161530, 33422603485, 803584699252, 20986514811397, 591616582807036, 17905570068475471, 579092313210791549, 19931241131544637637, 727395001560116046739, 28057672464546863483509, 1140566596105346550309751, 48735378037084078566334897, 2183719157723179429519093520, 102386962560815561519635957007
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 176*x^4 + 1697*x^5 + 19805*x^6 +... where the g.f. satisfies the identities: (1) A(x) = 1 + x + (2*x - x^2)^2 + (3*x - 3*x^2 + x^3)^3 + (4*x - 6*x^2 + 4*x^3 - x^4)^4 + (5*x - 10*x^2 + 10*x^3 - 5*x^4 + x^5)^5 +... (2) A(x) = (1-x) + (1-x)^2*(2*x - x^2) + (1-x)^3*(3*x - 3*x^2 + x^3)^2 + (1-x)^4*(4*x - 6*x^2 + 4*x^3 - x^4)^3 + (1-x)^5*(5*x - 10*x^2 + 10*x^3 - 5*x^4 + x^5)^4 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
terms = 24; gf = 1 + Sum[(1 - (1 - x)^n)^n, {n, 1, terms}] + O[x]^terms; CoefficientList[gf, x] (* Jean-François Alcover, Jul 01 2018 *)
-
PARI
{a(n)=local(q=1/(1-x+x*O(x^n)),A=1);A=sum(k=0,n,q^(-k^2)*(q^k-1)^k);polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
-
PARI
{a(n)=local(q=1/(1-x+x*O(x^n)),A=1);A=sum(k=1,n+1,q^(-k^2)*(q^k-1)^(k-1));polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Formula
G.f.: Sum_{n>=1} (1-x)^n * (1 - (1-x)^n)^(n-1).
a(n) = c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.93418651575946259471737... . - Vaclav Kotesovec, May 06 2014
In closed form, c = 2^(log(2)/2-1) / (log(2) * sqrt(Pi*(1-log(2)))). - Vaclav Kotesovec, May 03 2015
Extensions
a(22)-a(23) corrected by Andrew Howroyd, Feb 22 2018
Comments