cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220423 Cubefree products of primorials (A002110).

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 210, 420, 900, 1260, 2310, 4620, 6300, 13860, 30030, 44100, 60060, 69300, 180180, 485100, 510510, 900900, 1021020, 3063060, 5336100, 6306300, 9699690, 15315300, 19399380, 58198140, 69369300, 107207100, 223092870, 290990700
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 14 2012

Keywords

Comments

Suggested by a comment of Charles R Greathouse IV in A220264.

Crossrefs

Subsequence of A004709 and A073491.

Programs

  • Haskell
    import Data.Set (deleteFindMin, empty, fromList, union)
    import qualified Data.Set as Set (null)
    a220423 n = a220423_list !! (n-1)
    a220423_list = f (splitAt 1 a002110_list) empty where
       f (us'@(u:_), vs'@(v:vs)) s
         | Set.null s || m > u
                     = f (v:us', vs) (s `union` (fromList $ map (* u) us'))
         | otherwise = m : f (us', vs') s'
         where (m,s') = deleteFindMin s

Formula

A212793(a(n)) = 1; A051903(a(n)) < 3.
A001221(a(n)) <= A001222(a(n)) <= 2*A001221(a(n)).
A006530(a(n)) = A000040(A001221(a(n))).
Sum_{n>=1} 1/a(n) = (S(1)^2 + S(2))/2 = 2.093360845965235020766040..., where S(k) = Sum_{n>=0} 1/(A002110(n))^k (S(1) = 1 + A064648). - Amiram Eldar, Sep 24 2023