cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A220264 Smallest integer with exactly n semiprime divisors.

Original entry on oeis.org

1, 4, 12, 30, 60, 180, 210, 420, 1260, 6300, 2310, 4620, 13860, 69300, 485100, 30030, 60060, 180180, 900900, 6306300, 69369300, 510510, 1021020, 3063060, 15315300, 107207100, 1179278100, 15330615300, 9699690, 19399380, 58198140, 290990700, 2036934900, 22406283900
Offset: 0

Views

Author

Robert G. Wilson v, Dec 09 2012

Keywords

Comments

At the Mar 31 2011 suggestion of Zak Seidov in A086971.
Often a(n+1) = k*a(n) for some integer k.
All terms are cubefree products of primorials (A025487 INTERSECT A004709). - Charles R Greathouse IV, Dec 11 2012
A086971(a(n)) = n and A086971(m) != n for m < a(n). - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Subsequence of A220423.

Programs

  • Haskell
    import Data.List (find); import Data.Maybe (fromJust)
    a220264 n = fromJust $ find ((== n) . a086971) a220423_list
    -- Reinhard Zumkeller, Sep 08 2015
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; t = Table[0, {50}]; k = 1; While[k < 10^7, a = f@ k; If[t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t
  • PARI
    prim(n)=my(v=primes(n));prod(i=1,#v,v[i])
    a(n)=if(n>1,my(L=(sqrtint(8*n+1)+1)\2);prim(L)*prim(n-binomial(L,2)),1+3*n) \\ Charles R Greathouse IV, Dec 11 2012
    

Extensions

a(25)-a(26) from Donovan Johnson, Dec 10 2012
a(27)-a(41) from Charles R Greathouse IV, Dec 11 2012

A308618 Cubefree superabundant numbers: cubefree numbers (A004709) k such that sigma(k)/k > sigma(j)/j for all cubefree numbers j < k.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 1260, 4620, 6300, 13860, 69300, 180180, 900900, 3063060, 15315300, 58198140, 290990700, 1338557220, 2036934900, 6692786100, 38818159380, 46849502700, 194090796900, 1358635578300, 6016814703900, 42117702927300, 222622144044300
Offset: 1

Views

Author

Amiram Eldar, Aug 21 2019

Keywords

Comments

Erdős and Nicolas named these numbers "nombres sans cube superabondants".
All the terms are either primorials (A002110) or products of two primorials.
Also numbers m such that A073185(m)/m > A073185(k)/k for all k < m. - Amiram Eldar, Oct 08 2022

Crossrefs

Subsequence of A025487 and A220423.

Programs

  • Mathematica
    cubeFreeQ[n_] := Max @ FactorInteger[n][[;;, 2]] < 3; s = {}; rm = 0; Do[If[ !cubeFreeQ[n], Continue[]]; r = DivisorSigma[1, n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s

A309875 Cubefree colossally superabundant numbers: cubefree numbers (A004709) k for which there is a positive exponent epsilon such that sigma(k)/k^{1 + epsilon} >= sigma(j)/j^{1 + epsilon} for all cubefree j > 1, so that k attains the maximum value of sigma(k)/k^{1 + epsilon} over the cubefree numbers.

Original entry on oeis.org

2, 6, 12, 60, 180, 1260, 13860, 180180, 900900, 15315300, 290990700, 6692786100, 194090796900, 6016814703900, 42117702927300, 1558355008310100, 63892555340714100, 2747379879650706300, 129126854343583196100, 6843723280209909393300, 403779673532384654204700
Offset: 1

Views

Author

Amiram Eldar, Aug 21 2019

Keywords

Comments

This sequence is formed by the largest cubefree divisors (A007948) of the colossally superabundant numbers (A004490).

Crossrefs

Subsequence of A025487, A220423 and A308618.
Showing 1-4 of 4 results.