cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A086971 Number of semiprime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 22 2003

Keywords

Comments

Inverse Moebius transform of A064911. - Jonathan Vos Post, Dec 08 2004

References

  • G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Haskell
    a086971 = sum . map a064911 . a027750_row
    -- Reinhard Zumkeller, Dec 14 2012
  • Maple
    a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
           m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l)
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *)
    a[n_] := Count[e = FactorInteger[n][[;; , 2]], ?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* _Amiram Eldar, Jun 30 2022 *)
  • PARI
    /* The following definitions of a(n) are equivalent. */
    a(n) = sumdiv(n,d,bigomega(d)==2)
    a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = f=factor(n); j=omega(n); sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = omega(n/core(n)) + binomial(omega(n),2)
    /* Rick L. Shepherd, Mar 06 2006 */
    

Formula

a(n) = A106404(n) + A106405(n). - Reinhard Zumkeller, May 02 2005
a(n) = omega(n/core(n)) + binomial(omega(n),2) = A001221(n/A007913(n)) + binomial(A001221(n),2) = A056170(n) + A079275(n). - Rick L. Shepherd, Mar 06 2006
From Reinhard Zumkeller, Dec 14 2012: (Start)
a(n) = Sum_{k=1..A000005(n)} A064911(A027750(n,k)).
a(A220264(n)) = n and a(m) <> n for m < A220264(n); a(A008578(n)) = 0; a(A002808(n)) > 0; for n > 1: a(A102466(n)) <= 1 and a(A102467(n)) > 1; A066247(n) = A057427(a(n)). (End)
G.f.: Sum_{k = p*q, p prime, q prime} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 25 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 28 2006

A065119 Numbers k such that the k-th cyclotomic polynomial is a trinomial.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, 192, 216, 243, 288, 324, 384, 432, 486, 576, 648, 729, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2187, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6561, 6912, 7776, 8748, 9216
Offset: 1

Views

Author

Len Smiley, Nov 12 2001

Keywords

Comments

Appears to be numbers of form 2^a * 3^b, a >= 0, b > 0. - Lekraj Beedassy, Sep 10 2004
This is true: see link "Cyclotomic trinomials". - Robert Israel, Jul 14 2015
3-smooth numbers (A003586) which are not powers of 2 (A000079). - Amiram Eldar, Nov 10 2020
These are the conjugates of semiprimes, where conjugation is A122111; or Heinz numbers of conjugates of length-2 partitions. - Gus Wiseman, Nov 09 2023
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 13 2024

Examples

			The 54th cyclotomic polynomial is x^18 - x^9 + 1 which is trinomial, so 54 is in the sequence.
From _Gus Wiseman_, Nov 09 2023: (Start)
The terms and conjugate semiprimes, showing their respective Heinz partitions, begin:
    3: (2)              4: (1,1)
    6: (2,1)            6: (2,1)
    9: (2,2)            9: (2,2)
   12: (2,1,1)         10: (3,1)
   18: (2,2,1)         15: (3,2)
   24: (2,1,1,1)       14: (4,1)
   27: (2,2,2)         25: (3,3)
   36: (2,2,1,1)       21: (4,2)
   48: (2,1,1,1,1)     22: (5,1)
   54: (2,2,2,1)       35: (4,3)
   72: (2,2,1,1,1)     33: (5,2)
   81: (2,2,2,2)       49: (4,4)
   96: (2,1,1,1,1,1)   26: (6,1)
(End)
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 733, pp. 74 and 310, Ellipses Paris, 2004.

Crossrefs

Differs at the 18th term from A063996.
For primes (A008578) we have conjugates A000079.
For triprimes (A014612) we have conjugates A080193.
A001358 lists semiprimes, squarefree A006881, complement A100959.

Programs

  • Maple
    with(numtheory): a := []; for m from 1 to 3000 do if nops([coeffs(cyclotomic(m,x))])=3 then a := [op(a),m] fi od; print(a);
  • Mathematica
    max = 5000; Sort[Flatten[Table[2^a 3^b, {a, 0, Floor[Log[2, max]]}, {b, Floor[Log[3, max/2^a]]}]]] (* Alonso del Arte, May 19 2016 *)
  • PARI
    isok(n)=my(vp = Vec(polcyclo(n))); sum(k=1, #vp, vp[k] != 0) == 3; \\ Michel Marcus, Jul 11 2015
    
  • PARI
    list(lim)=my(v=List(),N); for(n=1,logint(lim\1,3), N=3^n; while(N<=lim, listput(v,N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Aug 07 2015

Formula

A206787(a(n)) = 4. - Reinhard Zumkeller, Feb 12 2012
a(n) = A033845(n)/2 = 3 * A003586(n). - Robert Israel, Jul 14 2015
Sum_{n>=1} 1/a(n) = 1. - Amiram Eldar, Nov 10 2020

Extensions

Offset set to 1 and more terms from Michel Marcus, Jul 11 2015

A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).

Original entry on oeis.org

90, 180, 210, 270, 360, 420, 450, 462, 525, 540, 550, 630, 720, 810, 840, 858, 900, 910, 924, 990, 1050, 1080, 1100, 1155, 1170, 1260, 1326, 1350, 1386, 1440, 1470, 1530, 1575, 1620, 1650, 1666, 1680, 1710, 1716, 1800, 1820, 1848, 1870, 1890, 1911, 1938, 1980
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
From Robert Israel, Nov 06 2023: (Start)
Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
All positive multiples of terms are terms. (End)

Examples

			The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
The terms together with their prime indices begin:
    90: {1,2,2,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   270: {1,2,2,2,3}
   360: {1,1,1,2,2,3}
   420: {1,1,2,3,4}
   450: {1,2,2,3,3}
   462: {1,2,4,5}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
   550: {1,3,3,5}
   630: {1,2,2,3,4}
   720: {1,1,1,1,2,2,3}
		

Crossrefs

The complement is too dense.
For all divisors instead of just semiprimes we have A299729, strict A316402.
Distinct semi-sums of prime indices are counted by A366739.
Partitions of this type are counted by A366753, non-binary A366754.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A299702 ranks knapsack partitions, counted by A108917, strict A275972.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Maple
    N:= 10^4: # for terms <= N
    P:= select(isprime, [$1..N]): nP:= nops(P):
    R:= {}:
    for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
      for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
        for k from j do
          l:= j+k-i;
          if l <= k or l > nP then break fi;
          v:= P[i]*P[j]*P[k]*P[l];
          if v <= N then
            R:= R union {seq(t,t=v..N,v)};
          fi
    od od od:
    sort(convert(R,list)); # Robert Israel, Nov 06 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]

Formula

These are numbers k such that A086971(k) > A366739(k).

A366739 Number of distinct semi-sums of the multiset of prime indices of n. Number of distinct sums of prime indices of semiprime divisors of n (counted by A086971).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 04 2023

Keywords

Comments

First differs from A086971 at a(90) = 3, A086971(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The prime indices of 90 are {1,2,2,3}, with semi-sums
  3 = 1+2
  4 = 1+3 (or 2+2)
  5 = 2+3
so a(90) = 3.
Alternatively, the semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5) so a(90) = 3.
		

Crossrefs

The non-binary version is A299701.
Summing over partitions gives A366738, strict A366741.
For all sums of pairs of elements we have A367095.
Positions of first appearances are A367097.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299702 ranks knapsack partitions, counted by A108917.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,100}]
  • PARI
    A366739(n) = #Set(apply(d->((f)->sum(i=1,#f~,f[i,2]*primepi(f[i,1])))(factor(d)), select(d->2==bigomega(d), divisors(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) <= A086971(n). - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A367093 Least positive integer with n more semiprime divisors than semi-sums of prime indices.

Original entry on oeis.org

1, 90, 630, 2310, 6930, 34650, 30030, 90090, 450450, 570570, 510510, 1531530, 7657650, 14804790, 11741730, 9699690, 29099070, 145495350
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
Are all primorials after 210 included?

Examples

			The terms together with their prime indices begin:
       1: {}
      90: {1,2,2,3}
     630: {1,2,2,3,4}
    2310: {1,2,3,4,5}
    6930: {1,2,2,3,4,5}
   34650: {1,2,2,3,3,4,5}
   30030: {1,2,3,4,5,6}
   90090: {1,2,2,3,4,5,6}
  450450: {1,2,2,3,3,4,5,6}
  570570: {1,2,3,4,5,6,8}
  510510: {1,2,3,4,5,6,7}
		

Crossrefs

The first part (semiprime divisors) is A086971, firsts A220264.
The second part (semi-sums of prime indices) is A366739, firsts A367097.
All sums of pairs of prime indices are counted by A367095.
The non-binary version is A367105.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts subset-sums of prime indices, positive A304793.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    nn=10000;
    w=Table[Length[Union[Subsets[prix[n],{2}]]]-Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
  • Python
    from itertools import count
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A367093(n):
        for k in count(1):
            c, a = 0, set()
            for s in (sum(p) for p in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)):
                if s not in a:
                    a.add(s)
                else:
                    c += 1
                if c > n:
                    break
            if c == n:
                return k # Chai Wah Wu, Nov 13 2023

Formula

a(n) is the least positive integer such that A086971(a(n)) - A366739(a(n)) = n.

Extensions

a(12)-a(16) from Chai Wah Wu, Nov 13 2023
a(17) from Chai Wah Wu, Nov 18 2023

A367096 Irregular triangle read by rows where row n lists the semiprime divisors of n. Alternatively, row n lists the semiprime divisors of A002808(n).

Original entry on oeis.org

4, 6, 4, 9, 10, 4, 6, 14, 15, 4, 6, 9, 4, 10, 21, 22, 4, 6, 25, 26, 9, 4, 14, 6, 10, 15, 4, 33, 34, 35, 4, 6, 9, 38, 39, 4, 10, 6, 14, 21, 4, 22, 9, 15, 46, 4, 6, 49, 10, 25, 51, 4, 26, 6, 9, 55, 4, 14, 57, 58, 4, 6, 10, 15, 62, 9, 21, 4, 65, 6, 22, 33, 4, 34
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2023

Keywords

Comments

On the first interpretation, the first three rows are empty. On the second, the first row is (4).

Examples

			The semiprime divisors of 30 are {6,10,15}, so row 30 is (6,10,15). Without empty rows, this is row 19.
Triangle begins (empty rows indicated by dots):
   1: .
   2: .
   3: .
   4: 4
   5: .
   6: 6
   7: .
   8: 4
   9: 9
  10: 10
  11: .
  12: 4,6
Without empty rows:
   1: 4
   2: 6
   3: 4
   4: 9
   5: 10
   6: 4,6
   7: 14
   8: 15
   9: 4
  10: 6,9
  11: 4,10
  12: 21
		

Crossrefs

For all divisors we have A027750.
Square terms are counted by A056170.
Row sums are A076290.
Squarefree terms are counted by A079275.
Row lengths are A086971, firsts A220264.
A000005 counts divisors.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, complement A100959.

Programs

  • Mathematica
    Table[Select[Divisors[n],PrimeOmega[#]==2&],{n,100}]
  • PARI
    row(n) = select(x -> bigomega(x) == 2, divisors(n)); \\ Amiram Eldar, May 02 2025

A367097 Least positive integer whose multiset of prime indices has exactly n distinct semi-sums.

Original entry on oeis.org

1, 4, 12, 30, 60, 210, 330, 660, 2730, 3570, 6270, 12540, 53130, 79170, 110670, 221340, 514140, 1799490, 2284590, 4196010, 6750870, 13501740, 37532220, 97350330, 131362770, 189620970, 379241940, 735844830, 1471689660
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
From David A. Corneth, Nov 15 2023: (Start)
Terms are cubefree.
bigomega(a(n)) = A001222(a(n)) >= A002024(n) + 1 = floor(sqrt(2n) + 1/2) + 1 for n > 0. (End)

Examples

			The prime indices of 60 are {1,1,2,3}, with four semi-sums {2,3,4,5}, and 60 is the first number whose prime indices have four semi-sums, so a(4) = 60.
The terms together with their prime indices begin:
       1: {}
       4: {1,1}
      12: {1,1,2}
      30: {1,2,3}
      60: {1,1,2,3}
     210: {1,2,3,4}
     330: {1,2,3,5}
     660: {1,1,2,3,5}
    2730: {1,2,3,4,6}
    3570: {1,2,3,4,7}
    6270: {1,2,3,5,8}
   12540: {1,1,2,3,5,8}
   53130: {1,2,3,4,5,9}
   79170: {1,2,3,4,6,10}
  110670: {1,2,3,4,7,11}
  221340: {1,1,2,3,4,7,11}
  514140: {1,1,2,3,5,8,13}
		

Crossrefs

The non-binary version is A259941, firsts of A299701.
These are the positions of first appearances in A366739.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, complement A100959.
A056239 adds up prime indices, row sums of A112798.
A299702 ranks knapsack partitions, counted by A108917.
A366738 counts semi-sums of partitions, strict A366741.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    nn=1000;
    w=Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    v=Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
  • Python
    from itertools import count
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A367097(n): return next(k for k in count(1) if len({sum(s) for s in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)}) == n) # Chai Wah Wu, Nov 13 2023

Formula

2 | a(n) for n > 0. - David A. Corneth, Nov 13 2023

Extensions

a(17)-a(22) from Chai Wah Wu, Nov 13 2023
a(23)-a(28) from David A. Corneth, Nov 13 2023

A220423 Cubefree products of primorials (A002110).

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 210, 420, 900, 1260, 2310, 4620, 6300, 13860, 30030, 44100, 60060, 69300, 180180, 485100, 510510, 900900, 1021020, 3063060, 5336100, 6306300, 9699690, 15315300, 19399380, 58198140, 69369300, 107207100, 223092870, 290990700
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 14 2012

Keywords

Comments

Suggested by a comment of Charles R Greathouse IV in A220264.

Crossrefs

Subsequence of A004709 and A073491.

Programs

  • Haskell
    import Data.Set (deleteFindMin, empty, fromList, union)
    import qualified Data.Set as Set (null)
    a220423 n = a220423_list !! (n-1)
    a220423_list = f (splitAt 1 a002110_list) empty where
       f (us'@(u:_), vs'@(v:vs)) s
         | Set.null s || m > u
                     = f (v:us', vs) (s `union` (fromList $ map (* u) us'))
         | otherwise = m : f (us', vs') s'
         where (m,s') = deleteFindMin s

Formula

A212793(a(n)) = 1; A051903(a(n)) < 3.
A001221(a(n)) <= A001222(a(n)) <= 2*A001221(a(n)).
A006530(a(n)) = A000040(A001221(a(n))).
Sum_{n>=1} 1/a(n) = (S(1)^2 + S(2))/2 = 2.093360845965235020766040..., where S(k) = Sum_{n>=0} 1/(A002110(n))^k (S(1) = 1 + A064648). - Amiram Eldar, Sep 24 2023

A367098 Number of divisors of n with exactly two distinct prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 0, 1, 3, 0, 2, 1, 3, 0, 6, 0, 1, 2, 2, 1, 3, 0, 4, 0, 1, 0, 5, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2023

Keywords

Examples

			The a(n) divisors for n = 1, 6, 12, 24, 36, 60, 72, 120, 144, 216, 288, 360:
  .  6  6   6   6   6   6   6   6    6    6    6
        12  12  12  10  12  10  12   12   12   10
            24  18  12  18  12  18   18   18   12
                36  15  24  15  24   24   24   15
                    20  36  20  36   36   36   18
                        72  24  48   54   48   20
                            40  72   72   72   24
                                144  108  96   36
                                     216  144  40
                                          288  45
                                               72
		

Crossrefs

For just one distinct prime factor we have A001222 (prime-power divisors).
This sequence counts divisors belonging to A007774.
Counting all prime factors gives A086971, firsts A220264.
Column k = 2 of A146289.
- Positions of zeros are A000961 (powers of primes), complement A024619.
- Positions of ones are A006881 (squarefree semiprimes).
- Positions of twos are A054753.
- Positions of first appearances are A367099.
A001221 counts distinct prime factors.
A001358 lists semiprimes, complement A100959.
A367096 lists semiprime divisors, sum A076290.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n], PrimeNu[#]==2&]],{n,100}]
    a[1] = 0; a[n_] := (Total[(e = FactorInteger[n][[;; , 2]])]^2 - Total[e^2])/2; Array[a, 100] (* Amiram Eldar, Jan 08 2024 *)
  • PARI
    a(n) = {my(e = factor(n)[, 2]); (vecsum(e)^2 - e~*e)/2;} \\ Amiram Eldar, Jan 08 2024

Formula

a(n) = (A001222(n)^2 - A090885(n))/2. - Amiram Eldar, Jan 08 2024
Showing 1-10 of 15 results. Next