cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A347391 Numbers k such that sigma(k) is either their sibling in Doudna tree (A005940), or one of the sibling's descendants.

Original entry on oeis.org

3, 4, 5, 15, 20, 189, 945, 2125, 6375, 9261, 46305, 401625, 19679625
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

Numbers k > 1 such that nearest common ancestor of k and sigma(k) in Doudna tree is the parent of k, and sigma(k) is not a descendant of k.
Any hypothetical odd term x in A005820 (triperfect numbers) would also be a member of this sequence. This is illustrated in the following diagram which shows how the neighborhood of such x would look like in the Doudna tree (A005940). If m (the parent of x, x = A003961(m), m = A064989(x)) is even, then x is a multiple of 3, while if m is odd, then 3 does not divide x. Because the abundancy index decreases when traversing leftwards in the Doudna tree, m must be a term of A068403. Both x and m would also need to be squares, by necessity.
.
<--A003961-- m ---(*2)--->
.............../ \...............
/ \
/ \
x 2m
/ \ / \
etc.../ \.....2x sigma(x) = 3x..../ \.....4m
/ \ / \ / \
etc. etc. etc. \ / etc.
\ /
6x 9x = sigma(2x)
/ \ / \
etc. \ etc. etc.
\
12x = sigma(3x) if m odd.
.
From the diagram we also see that 2x would then need to be a term of A347392 (as well as that of A159907 and also in A074388, thus sqrt(x) should be a term of A097023), and furthermore, if x is not a multiple of 3 (i.e., when m is odd), then sigma(3*x) = 4*sigma(x) = 4*(3*x), thus 3*x = sigma(x) would be a term of A336702 (particularly, in A027687) and x would be a term of A323653.
Moreover, any odd square x in this sequence (for which sigma(x) would also be odd), would have an abundancy index of at least three (sigma(x)/x >= 3). See comments in A347383.
Note how 401625 = 6375 * 63 = 945 * 425, 46305 = 945 * 49, 9261 = 189 * 49, 6375 = 2125 * 3, 945 = 189 * 5 = 15 * 63 and 9261*2125 = 19679625. It seems that when the multiplicands are coprime, then they are both terms of this sequence, e.g. 2125 and 3, 189 and 5, 2125 and 9261.
From Antti Karttunen, Jul 10 2024: (Start)
Regarding the observation above, for two coprime odd numbers x, y, if both are included here because sigma(x) = 2^a * A064989(x) and sigma(y) = 2^b * A064989(y), then also their product x*y is included because in that case sigma(x*y) = 2^(a+b) * A064989(x*y).
Also, for two coprime odd numbers x, y, if both are included here because sigma(x) = A065119(i) * x and sigma(y) = A065119(j) * y, then also their product x*y is included because sigma(x*y) = A065119(k) * x*y, where A065119(k) = A065119(i)*A065119(j). The existence of such numbers (that would include odd triperfect and odd 6-perfect numbers, see A046061) is so far hypothetical, none is known.
It is not possible that the odd x is in this sequence if sigma(x) = k*A003961^e(x) and e = A061395(k)-2 >= 1.
Note that all odd terms < 2^33 here are some of the exponentially odd divisors of 19679625 (see A374199, also A374463 and A374464).
(End)
Question: from a(6) = 189 onward, are the rest of terms all in A347390?
Conjecture: sequence is finite.
If it exists, a(14) > 2^33.

Examples

			Sigma(3) = 4 is located as the sibling of 3 in the Doudna-tree (see the illustration in A005940), thus 3 is included in this sequence.
Sigma(4) = 7 is located as a grandchild of 3 (which is the sibling of 4) in the Doudna-tree, thus 4 is included in this sequence.
Sigma(5) = 6 is located as the sibling of 5 in the Doudna-tree, thus 5 is included in this sequence.
189 (= 3^3 * 7) is a term, as sigma(189) = 320, and 320 occurs as a descendant of 80 (which is the right sibling of 189) in the Doudna tree, as illustrated below:
.
             40
            /  \
   A003961 /    \ *2
          /      \
        189       80
        / \      / \
     etc   etc etc  160
                   / \
                 etc  320
                     / \
                   etc. etc.
.
945 (= 3^3 * 5 * 7) is a term, as sigma(945) = 1920, and 1920 occurs as a descendant of 240, which is the right sibling of 945 in the Doudna tree, as illustrated below:
            120
            /  \
   A003961 /    \ *2
          /      \
        945       240
        / \      / \
     etc   etc  etc  480
                   / \
                 etc  960
                     / \
                   etc. 1920
                        / \
                     etc. etc.
		

Crossrefs

Programs

  • PARI
    isA347391(n) = (1==A347381(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    isA347391(n) = if(1==n,0,my(m=A252463(n), s=sigma(n)); while(s>m, if(s==n, return(0)); s = A252463(s)); (s==m));

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023

A206787 Sum of the odd squarefree divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 4, 6, 12, 4, 14, 8, 24, 1, 18, 4, 20, 6, 32, 12, 24, 4, 6, 14, 4, 8, 30, 24, 32, 1, 48, 18, 48, 4, 38, 20, 56, 6, 42, 32, 44, 12, 24, 24, 48, 4, 8, 6, 72, 14, 54, 4, 72, 8, 80, 30, 60, 24, 62, 32, 32, 1, 84, 48, 68, 18, 96, 48, 72, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Comments

a(A000079(n)) = 1; a(A057716(n)) > 1; a(A065119(n)) = 4; a(A086761(n)) = 6.
Inverse Mobius transform of 1, 0, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 0, 0, 0, 0, 29... - R. J. Mathar, Jul 12 2012

Crossrefs

Inverse Möbius transform of the absolute values of A349343.

Programs

  • Haskell
    a206787 = sum . filter odd . a206778_row
    
  • Magma
    [&+[d:d in Divisors(m)|IsOdd(d) and IsSquarefree(d)]:m in [1..72]]; // Marius A. Burtea, Aug 14 2019
    
  • Maple
    seq(add(d*mobius(2*d)^2, d in divisors(n)), n=1 .. 80); # Ridouane Oudra, Aug 14 2019
  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[OddQ[#] && SquareFreeQ[#]]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015 *)
    f[2, e_] := 1; f[p_, e_] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ Michel Marcus, Sep 21 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A206787(n): return prod(1+(p if p>2 else 0) for p in primefactors(n)) # Chai Wah Wu, Oct 10 2024

Formula

a(n) = Sum_{k = 1..A034444(n)} (A206778(n,k) mod 2) * A206778(n,k).
a(n) = Sum_{d|n} d*mu(2*d)^2, where mu is the Möbius function (A008683). - Ridouane Oudra, Aug 14 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p + 1 for p > 2. - Amiram Eldar, Sep 18 2020
Sum_{k=1..n} a(k) ~ (1/3) * n^2. - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-2))*(2^s/(2^s+2)). - Amiram Eldar, Jan 03 2023
From Antti Karttunen, Nov 22 2023: (Start)
a(n) = A000203(A204455(n)) = A000593(A007947(n)) = A048250(n)/A010684(n-1). [From Sequence Machine]
a(n) = Sum_{d|n} abs(A349343(d)). [See R. J. Mathar's Jul 12 2012 comment above]
(End)
a(n) = Sum_{d divides n, d odd} d * mu(d)^2. - Peter Bala, Feb 01 2024

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).

Original entry on oeis.org

90, 180, 210, 270, 360, 420, 450, 462, 525, 540, 550, 630, 720, 810, 840, 858, 900, 910, 924, 990, 1050, 1080, 1100, 1155, 1170, 1260, 1326, 1350, 1386, 1440, 1470, 1530, 1575, 1620, 1650, 1666, 1680, 1710, 1716, 1800, 1820, 1848, 1870, 1890, 1911, 1938, 1980
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
From Robert Israel, Nov 06 2023: (Start)
Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
All positive multiples of terms are terms. (End)

Examples

			The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
The terms together with their prime indices begin:
    90: {1,2,2,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   270: {1,2,2,2,3}
   360: {1,1,1,2,2,3}
   420: {1,1,2,3,4}
   450: {1,2,2,3,3}
   462: {1,2,4,5}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
   550: {1,3,3,5}
   630: {1,2,2,3,4}
   720: {1,1,1,1,2,2,3}
		

Crossrefs

The complement is too dense.
For all divisors instead of just semiprimes we have A299729, strict A316402.
Distinct semi-sums of prime indices are counted by A366739.
Partitions of this type are counted by A366753, non-binary A366754.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A299702 ranks knapsack partitions, counted by A108917, strict A275972.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Maple
    N:= 10^4: # for terms <= N
    P:= select(isprime, [$1..N]): nP:= nops(P):
    R:= {}:
    for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
      for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
        for k from j do
          l:= j+k-i;
          if l <= k or l > nP then break fi;
          v:= P[i]*P[j]*P[k]*P[l];
          if v <= N then
            R:= R union {seq(t,t=v..N,v)};
          fi
    od od od:
    sort(convert(R,list)); # Robert Israel, Nov 06 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]

Formula

These are numbers k such that A086971(k) > A366739(k).

A366739 Number of distinct semi-sums of the multiset of prime indices of n. Number of distinct sums of prime indices of semiprime divisors of n (counted by A086971).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 04 2023

Keywords

Comments

First differs from A086971 at a(90) = 3, A086971(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The prime indices of 90 are {1,2,2,3}, with semi-sums
  3 = 1+2
  4 = 1+3 (or 2+2)
  5 = 2+3
so a(90) = 3.
Alternatively, the semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5) so a(90) = 3.
		

Crossrefs

The non-binary version is A299701.
Summing over partitions gives A366738, strict A366741.
For all sums of pairs of elements we have A367095.
Positions of first appearances are A367097.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299702 ranks knapsack partitions, counted by A108917.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,100}]
  • PARI
    A366739(n) = #Set(apply(d->((f)->sum(i=1,#f~,f[i,2]*primepi(f[i,1])))(factor(d)), select(d->2==bigomega(d), divisors(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) <= A086971(n). - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A367095 Number of distinct sums of pairs (repeats allowed) of prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 6, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 5, 1, 3, 3, 1, 3, 6, 1, 3, 3, 6, 1, 3, 1, 3, 3, 3, 3, 6, 1, 3, 1, 3, 1, 6, 3, 3, 3, 3, 1, 5, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 6, 1, 3, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Is the image missing only 2 and 4?

Examples

			The prime indices of 15 are {2,3}, with sums of pairs:
  2+2 = 4
  2+3 = 5
  3+3 = 6
so a(15) = 3.
The prime indices of 180 are {1,1,2,2,3}, with sums of pairs:
  1+1 = 2
  1+2 = 3
  1+3 = 4
  2+2 = 4
  2+3 = 5
  3+3 = 6
so a(180) = 5.
		

Crossrefs

Depends only on squarefree kernel A007947. (Even more exactly, on A322591 - Antti Karttunen, Jan 20 2025)
Positions of first appearances appear to be a subset of A325986.
For 2-element submultisets we have A366739, for all submultisets A299701.
A001222 counts prime factors (also indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A304793 counts positive subset-sums of prime indices.
A367096 lists semiprime divisors, count A086971.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Tuples[prix[n],2]]],{n,100}]
  • PARI
    A367095(n) = if(1==n, 0, my(pis=apply(primepi,factor(n)[,1]), pairsums = vector(binomial(1+#pis,2)), k=0); for(i=1,#pis,for(j=i,#pis,k++; pairsums[k] = pis[i]+pis[j])); #Set(pairsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A367093 Least positive integer with n more semiprime divisors than semi-sums of prime indices.

Original entry on oeis.org

1, 90, 630, 2310, 6930, 34650, 30030, 90090, 450450, 570570, 510510, 1531530, 7657650, 14804790, 11741730, 9699690, 29099070, 145495350
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
Are all primorials after 210 included?

Examples

			The terms together with their prime indices begin:
       1: {}
      90: {1,2,2,3}
     630: {1,2,2,3,4}
    2310: {1,2,3,4,5}
    6930: {1,2,2,3,4,5}
   34650: {1,2,2,3,3,4,5}
   30030: {1,2,3,4,5,6}
   90090: {1,2,2,3,4,5,6}
  450450: {1,2,2,3,3,4,5,6}
  570570: {1,2,3,4,5,6,8}
  510510: {1,2,3,4,5,6,7}
		

Crossrefs

The first part (semiprime divisors) is A086971, firsts A220264.
The second part (semi-sums of prime indices) is A366739, firsts A367097.
All sums of pairs of prime indices are counted by A367095.
The non-binary version is A367105.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts subset-sums of prime indices, positive A304793.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    nn=10000;
    w=Table[Length[Union[Subsets[prix[n],{2}]]]-Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
  • Python
    from itertools import count
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A367093(n):
        for k in count(1):
            c, a = 0, set()
            for s in (sum(p) for p in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)):
                if s not in a:
                    a.add(s)
                else:
                    c += 1
                if c > n:
                    break
            if c == n:
                return k # Chai Wah Wu, Nov 13 2023

Formula

a(n) is the least positive integer such that A086971(a(n)) - A366739(a(n)) = n.

Extensions

a(12)-a(16) from Chai Wah Wu, Nov 13 2023
a(17) from Chai Wah Wu, Nov 18 2023

A125624 Array read by antidiagonals: n-th row contains the positive integers with their largest prime factor equal to the n-th prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 7, 10, 9, 16, 11, 14, 15, 12, 32, 13, 22, 21, 20, 18, 64, 17, 26, 33, 28, 25, 24, 128, 19, 34, 39, 44, 35, 30, 27, 256, 23, 38, 51, 52, 55, 42, 40, 36, 512, 29, 46, 57, 68, 65, 66, 49, 45, 48, 1024, 31, 58, 69, 76, 85, 78, 77, 56, 50, 54, 2048, 37, 62, 87, 92
Offset: 1

Views

Author

Leroy Quet, Jan 27 2007

Keywords

Comments

This sequence is a permutation of the integers >= 2.
Since the table has been entered by rising instead of falling antidiagonals, the sequence represents the transpose, with columns instead of rows: cf. the "table" link, section "infinite square array". - M. F. Hasler, Oct 22 2019
Start with table headed by primes in the first row, then list beneath each prime(k) the ordered prime(k)-smooth numbers. Read the table by falling antidiagonals to get the terms of this sequence. - David James Sycamore, Jun 23 2024

Examples

			Array begins: (rows here appear as columns in the "table" display of the sequence)
   2,  4,  8, 16, 32, 64, 128, 256, 512, ... (A000079)
   3,  6,  9, 12, 18, 24,  27,  36,  48, ... (A065119)
   5, 10, 15, 20, 25, 30,  40,  45,  50, ... (A080193)
   7, 14, 21, 28, 35, 42,  49,  56,  63, ... (A080194)
  11, 22, 33, 44, 55, 66,  77,  88,  99, ... (A080195)
  13, 26, 39, 52, 65, 78,  91, 104, 117, ... (A080196)
The 3rd row, for example, contains the positive integers where the 3rd prime, 5, is the largest prime divisor. That is, each integer in this row is divisible by 5 and may be divisible by 2 or 3 as well, but none of the integers in this row are divisible by primes larger than 5. (So for example, 35 = 5*7 is excluded from the 3rd row.)
		

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[ -1, 1]];f[n_, m_] := f[n, m] = Block[{k},k = If[m == 1, Prime[n], f[n, m - 1] + 1];While[lpf[k] != Prime[n], k++ ];k];Table[f[ d - m + 1, m], {d, 12}, {m, d}] // Flatten (* Ray Chandler, Feb 09 2007 *)
  • PARI
    T=List(); r=c=1; for(n=1,99, #TT[r][1], ); print1(T[r][c]","); r-- && c++ || r=c+c=1) \\ M. F. Hasler, Oct 22 2019

Extensions

Extended by Ray Chandler, Feb 09 2007

A072994 Number of solutions to x^n==1 (mod n), 1<=x<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 8, 3, 2, 1, 8, 5, 2, 9, 4, 1, 4, 1, 16, 1, 2, 1, 12, 1, 2, 3, 16, 1, 12, 1, 4, 3, 2, 1, 16, 7, 10, 1, 8, 1, 18, 5, 8, 3, 2, 1, 16, 1, 2, 9, 32, 1, 4, 1, 8, 1, 4, 1, 24, 1, 2, 5, 4, 1, 12, 1, 32, 27, 2, 1, 24, 1, 2, 1, 8, 1, 12, 1, 4, 3
Offset: 1

Views

Author

Benoit Cloitre, Aug 21 2002

Keywords

Comments

More generally, if the equation a(x)*m=x has solutions, solutions are congruent to m: a(x)*7=x for x=7, 14, 21, 28, 49, 56, 63, 98, 112, ... . There are some composite values of m such that a(x)*m=x has solutions, as m=15. a(n) coincides with A009195(n) at many values of n, but not at n = 20, 30, 40, 42, 52, 60, 66, 68, 70, 78, 80, 84, 90, 100, ... . It seems also that for n large enough sum_{k=1..n} a(k) > n*log(n)*log(log(n)).
Similar (if not the same) coincidences and differences occur between A072995 and A050399. Sequence A072989 lists these indices. - M. F. Hasler, Feb 23 2014

Programs

  • Maple
    1, seq(nops(select(t -> t^n mod n = 1, [$1..n-1])),n=2..100); # Robert Israel, Dec 07 2014
  • Mathematica
    f[n_] := (d = If[ OddQ@ n, 1, 2]; d*Length@ Select[ Range[ n/d], PowerMod[#, n, n] == 1 &]); f[1] = f[2] = 1; Array[f, 93] (* or *)
    f[n_] := Length@ Select[ Range@ n, PowerMod[#, n, n] == 1 &]; f[n_] := 1 /; n<2; Array[f, 93] (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    A072994=n->sum(k=1,n,Mod(k,n)^n==1) \\ M. F. Hasler, Feb 23 2014

Formula

For n>0, a(A003277(n)) = 1, a(2^n) = 2^(n-1), a(A065119(n)) = A065119(n)/3.
For n>1, a(A026383(n)) = A026383(n)/5.

Extensions

Corrected by T. D. Noe, May 19 2007
Showing 1-10 of 20 results. Next