cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A336702 Numbers whose abundancy index is a power of 2.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Apart from missing 2, this sequence gives all numbers k such that the binary expansion of A156552(k) is a prefix of that of A156552(sigma(k)), that is, for k > 1, numbers k for which sigma(k) is a descendant of k in A005940-tree. This follows because of the two transitions x -> A005843(x) (doubling) and x -> A003961(x) (prime shift) used to generate descendants in A005940-tree, using A003961 at any step of the process will ruin the chances of encountering sigma(k) anywhere further down that subtree.
Proof: Any left child in A005940 (i.e., A003961(k) for k) is larger than sigma(k), for any k > 2 [see A286385 for a proof], and A003961(n) > n for all n > 1. Thus, apart from A003961(2) = 3 = sigma(2), A003961^t(k) > sigma(k), where A003961^t means t-fold application of prime shift, here with t >= 1. On the other hand, sigma(2n) > sigma(n) for all n, thus taking first some doubling steps before a run of one or more prime shift steps will not rescue us, as neither will taking further doubling steps after a bout of prime shifts.
The first terms of A325637 not included in this sequence are 154345556085770649600 and 9186050031556349952000, as they have abundancy index 6.
From Antti Karttunen, Nov 29 2021: (Start)
Odd terms of this sequence are given by the intersection of A349169 and A349174.
A064989 applied to the odd terms of this sequence gives the fixed points of A326042, i.e., the positions of zeros in A348736, and a subset of the positions of ones in A348941.
Odd terms of this sequence form a subsequence of A348943, but should occur neither in A348748 nor in A348749.
(End)

Examples

			For 30240, sigma(30240) = 120960 = 4*30240, therefore, as sigma(k)/k = 2^2, a power of two, 30240 is present.
		

Crossrefs

Cf. A000396, A027687 (subsequences).
Subsequence of A007691, and after 1, also subsequence of A325637.
Union with {2} gives the positions of zeros in A347381.

Programs

  • PARI
    isA336702(n) = { my(r=sigma(n)/n); (1==denominator(r)&&!bitand(r, r-1)); }; \\ (Corrected) - Antti Karttunen, Aug 31 2021

A347381 Distance from n to the nearest common ancestor of n and sigma(n) in the Doudna-tree (A005940).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 3, 2, 2, 3, 3, 2, 2, 3, 1, 3, 6, 3, 5, 1, 4, 5, 7, 2, 3, 4, 3, 0, 8, 4, 10, 4, 4, 7, 2, 4, 4, 7, 3, 4, 10, 4, 9, 4, 3, 9, 13, 4, 4, 4, 7, 7, 15, 4, 5, 5, 6, 9, 15, 4, 7, 10, 3, 5, 4, 6, 12, 6, 8, 5, 19, 5, 9, 6, 4, 8, 3, 5, 19, 4, 3, 11, 20, 4, 7, 11, 9, 6, 22, 4, 4, 8, 11, 15, 7, 5, 24, 5, 3, 5, 20
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

a(n) tells about the degree of relatedness between n and sigma(n) in Doudna tree (see the illustration in A005940). It is 0 for those n where sigma(n) is one of the descendants of n, 1 for those n where the nearest common ancestor of n and sigma(n) is the parent of n, 2 for those n where the nearest common ancestor of n and sigma(n) is the grandparent of n, and so on.

Crossrefs

Indices of 0 .. 5 in this sequence are given by {2} U A336702, A347391, A347392, A347393, A347394, A374465.
Cf. A000203, A027687, A156552, A252463, A252464, A332221, A347380, A347383, A347384, A347390, A374481 [a(prime(n))], A374482 (indices of records), A374483 (record values).
Cf. also A336834.

Programs

  • PARI
    A000523(n) = logint(n,2);
    Abincompreflen(x, y) = if(!x || !y, 0, my(xl=A000523(x), yl=A000523(y), s=min(xl,yl), k=0); x >>= (xl-s); y >>= (yl-s); while(s>=0 && !bitand(1,bitxor(x>>s,y>>s)), s--; k++); (k));
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = if(1==n,0,(bigomega(n) + A061395(n) - 1));
    A347381(n) = (A252464(n)-Abincompreflen(A156552(n), A156552(sigma(n))));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A347381(n) = if(1==n,0, my(lista=List([]), i, k=n, stemvec, stemlen, sbr=sigma(n)); while(k>1, listput(lista,k); k = A252463(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,sbr))>0, return(stemlen-i)); sbr = A252463(sbr)));

Formula

a(n) = A252464(n) - A347380(n), where A347380(n) is the length of the common prefix in binary expansions of A156552(n) and A332221(n) = A156552(sigma(n)).

Extensions

Name changed, old name is now in formula section. - Antti Karttunen, Jul 09 2024

A347383 Odd composites k, not powers of primes, such that for all their nontrivial unitary divisors d it holds that A347381(d) > A347381(k).

Original entry on oeis.org

189, 1271, 2125, 9261, 63767, 133907, 142859, 161257, 189209, 226967, 368063, 426373, 777923, 801727, 925101, 961193, 1003043, 4566661, 5244091, 5588327, 6031163, 6064439, 8135263, 8639879, 10074227, 10150571, 11234875, 12489107, 16016003, 19765547, 22635539
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2021

Keywords

Comments

Here nontrivial unitary divisor d of k means any divisor d|k, such that 1 < d < k and gcd(d, k/d) = 1.
Any hypothetical odd term x in A005820 (triperfect numbers) would also be a member of this sequence. Proof: such an odd number cannot be a prime power (although it must be a square), thus it must have at least two nontrivial unitary divisors (with A034444(x) >= 4). Because sigma(x) = 3*x, it must be a term of A347391. From the illustration given there, we see that any odd square y in that sequence (i.e. with A347381(y)=1) would have an abundancy index of at least three (sigma(y)/y >= 3). But because abundancy index is multiplicative and always > 1 for n > 1, any nontrivial unitary divisor d of an odd triperfect number x must have sigma(d)/d < 3, thus for all such d, A347381(d) <> 1. And neither such divisor d can be a term of A336702, because 3*x is odd, therefore we must have A347381(d) > 1 for all nontrivial unitary divisors d of such a hypothetical x.
Any odd term of A000396, i.e., an odd perfect number, if such a hypothetical number exists, must also be a term of this sequence, by reasoning similar to above. See also illustration in A347392.

Examples

			189 is a term, because A347381(189) = 1, and the only way to factor 189 into nontrivial unitary divisors is 7*27, and A347381(7) = A347381(27) = 3 > 1.
63767 = 11^2 * 17 * 31 is a term, as its nontrivial unitary divisors are [17, 31, 121, 527, 2057, 3751], at which points A347381 obtains values [6, 10, 5, 11, 6, 8], every one which is larger than A347381(63767) = 3.
		

Crossrefs

Subsequence of A347390, which is a subsequence of A347384.

Programs

  • PARI
    isA347383(n) = if((1==n)||!(n%2)||isprimepower(n),0,my(w=A347381(n)); fordiv(n,d,if((d>1)&&(dA347381(d)<=w), return(0))); (1));

Extensions

a(29)-a(31) from Jinyuan Wang, Jul 09 2025

A347392 Numbers k such that nearest common ancestor of k and sigma(k) in Doudna tree (A347879) is the grandparent of k.

Original entry on oeis.org

8, 9, 12, 13, 24, 35, 160, 455, 42550, 127650, 8041950, 22469750, 58506250, 67409250, 175518750, 394055550, 4246782750
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

Note how 13 * 35 = 455.
If there exists any odd perfect numbers x, with sigma(x) = 2x, then 2*x would be a term of this sequence, as then sigma(2*x) = 6*x would be situated as a descendant under the other branch of the grandparent of 2*x (a parent of x), which is m = A064989(x), with m in A005101. Opn x itself would be a term of A336702. Furthermore, if such x is not a multiple of 3 (in which case m is odd and in A005231), then also 3x would be a term of this sequence as sigma(3*x) = 4*sigma(x) = 8*x would be situated as a grandchild of 2x, with 2x being a first cousin of 3x. Also, in that case, 6*x would be located in A336702 (particularly, in A027687) because then sigma(6*x) = 12*sigma(x) = 24*x = 4*(6*x).
.
<--A003961-- m ---(*2)--->
.............../ \...............
/ \
/ \
/ \
x 2m
etc..../ \......2x = sigma(x) 3x....../ \......4m
/ \ / \ / \
etc. \ etc. \ etc. etc.
\ \
4x sigma(2x) = 6x
/ \ / \
etc \ etc. \
\ \
8x = sigma(3x) 12x
if m odd \
\
24x = sigma(6x) if m odd.
.
Furthermore, if there were any hypothetical odd terms y in A005820 (triperfect numbers), then 2y would be a term of this sequence. See the diagram in A347391.
If it exists, a(18) > 2^33.

Examples

			455 is included in the sequence as sigma(455) = 672, and the nearest common ancestor of 455 and 672 in Doudna tree is 42, which is the grandparent of 455 [as 455 = A003961(A003961(42))] and the grand-grand-grand-parent of 672 [as 672 = (2^4)*42].
		

Crossrefs

Programs

A347879 The nearest common ancestor of n and sigma(n) in the Doudna tree (A005940).

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 2, 2, 2, 2, 3, 3, 7, 3, 6, 2, 2, 2, 5, 10, 2, 2, 3, 6, 2, 5, 2, 28, 3, 2, 2, 2, 3, 2, 6, 2, 19, 3, 7, 3, 5, 3, 11, 5, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 3, 3, 31, 3, 5, 2, 5, 2, 17, 5, 3, 2, 2, 2, 37, 17, 2, 3, 6, 5, 5, 5, 4, 5, 5, 5, 2, 7, 3, 3, 3, 3, 5, 5, 2, 2, 3, 3, 2, 2, 7, 2, 13, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2021

Keywords

Comments

The fixed points of this sequence is given by the union of {2} and A336702.
The positions x such that a(x) = A252463(x) is given by the union of {1} and A347391.
The positions x such that a(x) = A252463(A252463(x)) is given by the union of {1} and A347392.

Crossrefs

Programs

Formula

a(n) = A348041(n, A000203(n)).

A347882 Odd numbers k for which A003415(sigma(k^2))-(k^2) is strictly positive and a multiple of 3. Here A003415 is the arithmetic derivative.

Original entry on oeis.org

273, 399, 651, 741, 777, 819, 903, 1197, 1209, 1281, 1365, 1407, 1443, 1533, 1659, 1677, 1767, 1925, 1953, 1995, 2035, 2037, 2109, 2163, 2223, 2289, 2331, 2379, 2451, 2457, 2613, 2667, 2709, 2847, 2919, 3003, 3081, 3171, 3255, 3297, 3423, 3441, 3477, 3591, 3627, 3685, 3705, 3783, 3801, 3819, 3843, 3885, 3999, 4017
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2021

Keywords

Comments

Of the first 200 terms of A097023, 44 appear also in this sequence, the first ones being 50281, 73535, 379953, etc. The square root of any hypothetical odd term appearing in A005820 should satisfy both conditions, and the term itself should appear in both A347383 and A347391.

Crossrefs

Subsequence of A347881. The intersection with A347887 gives A347888.
Cf. also A342923.

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 4000, 2], (d = ad[DivisorSigma[1, #^2]] - #^2) > 0 && Divisible[d, 3] &] (* Amiram Eldar, Sep 18 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA347882(n) = if(!(n%2),0,my(u=(A003415(sigma(n^2))-(n^2))); ((u>0)&&!(u%3)));

A386425 Odd composites k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

153, 801, 1773, 3725, 4689, 4753, 5013, 6957, 8577, 8725, 9549, 9873, 11493, 13437, 14409, 15381, 18621, 19269, 21213, 21537, 23481, 25101, 26073, 26225, 28989, 29161, 29313, 29961, 32229, 33849, 34173, 36117, 38061, 39033, 40653, 42597, 43893, 47457, 47781, 48725, 48753, 51669, 52317, 54261, 56953, 57177, 57501
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

By definition, the sequence contains all odd perfect numbers, and also includes any hypothetical odd triperfect number that is not a multiple of 3 (see A005820 and A347391), and similarly, any odd term of A046060 that is not a multiple of 5, etc. If there are no squares in this sequence (see conjecture in A386424), then the latter categories of numbers certainly do not exist, and this is then a subsequence of A228058.
The first nondeficient term is a(32315) = 81022725. See A386426.

Crossrefs

Intersection of A071904 and A386424.
Nonsquare terms form a subsequence of A228058.
Cf. A000203, A003557, A057521, A386426 (nondeficient terms).
Cf. also A324647, A349749.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[9,57501,2],!PrimeQ[#]&&a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386425(n) = ((n>1) && (n%2) && !isprime(n) && (A057521(sigma(n))==A057521(n)));

Formula

{k | k is odd composite and A003557(A000203(k)) = A003557(k)}.

A347390 Odd numbers k that can be factored to such a pair of coprime factors x and y that A347381(k) < min(A347381(x), A347381(y)).

Original entry on oeis.org

189, 455, 945, 1271, 1365, 2125, 4199, 6375, 9261, 12597, 13167, 15631, 18189, 20995, 21275, 24583, 26273, 29393, 30879, 42813, 43475, 46163, 46189, 46305, 46575, 46893, 54653, 63767, 63825, 65317, 67473, 67673, 73749, 78155, 78725, 89503, 90117, 90945, 92783, 93869, 106079, 108819, 119239, 122265, 127323, 129575
Offset: 1

Views

Author

Antti Karttunen, Sep 09 2021

Keywords

Examples

			189 is a term, because A347381(189) = 1, and 189 can be factored as 7*27 with gcd(7,27)=1, and A347381(7) = A347381(27) = 3 > 1.
455 is a term, because A347381(455) = 2, and 455 can be factored as 7*65 with gcd(7,65)=1, and A347381(65) = 4 > A347381(7) = 3 > A347381(455) = 2.
945 is a term, because A347381(945) = 1, and 945 can be factored as 27*35 with gcd(27,35)=1, and A347381(27) = 3 > A347381(35) = 2 > A347381(945) = 1.
1542968918569 = (13*19*47*107)^2 is a term, because it can be factored as 893^2 * 1391^2, with gcd(893^2, 1391^2) = 1, and A347381(1391^2) = 30 > A347381(893^2) = 17 > A347381(1542968918569) = 12. (This is probably the smallest square present in the sequence).
		

Crossrefs

Subsequence of A347384. Cf. also A347383 (subsequence).

Programs

  • PARI
    isA347390(n) = if(!(n%2),0,my(w=A347381(n)); fordiv(n,d,if(d>(n/d),return(0)); if(1==gcd(d,n/d) && (min(A347381(d),A347381(n/d))>w), return(1))); (0));

A347393 Positions of 3's in A347381.

Original entry on oeis.org

7, 10, 11, 14, 16, 18, 25, 27, 39, 45, 63, 77, 81, 99, 105, 135, 182, 270, 819, 1365, 1392, 1638, 4250, 15631, 21275, 63767, 122944, 161257, 203203, 446369, 936100, 1128799, 1773827, 2808300
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Crossrefs

Showing 1-10 of 22 results. Next