A326051 1/2 times 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: a(n) = A005820(n)/2.
60, 336, 261888, 229909120, 738152448, 25500590080
Offset: 1
Crossrefs
Cf. A005820.
Formula
a(n) = A005820(n)/2.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
a000396 n = a000396_list !! (n-1) a000396_list = [x | x <- [1..], a000203 x == 2 * x] -- Reinhard Zumkeller, Jan 20 2012
Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *) PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
isA000396(n) = (sigma(n) == 2*n);
from sympy import divisor_sigma def ok(n): return n > 0 and divisor_sigma(n) == 2*n print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022
120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
a007691 n = a007691_list !! (n-1) a007691_list = filter ((== 1) . a017666) [1..] -- Reinhard Zumkeller, Apr 06 2012
Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *) Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]] (* Third program: *) Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
from sympy import divisor_sigma as sigma def ok(n): return sigma(n, 1)%n == 0 print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
[m: m in [1..560000]| IsIntegral(DivisorSigma(1,DivisorSigma(1,m))/m)]; // Marius A. Burtea, Nov 16 2019
Select[Range[100000], Mod[DivisorSigma[1, DivisorSigma[1, #]], #] == 0 &] (* Carl Najafi, Aug 22 2011 *)
is_A019278(n)=sigma(sigma(n))%n==0 \\ M. F. Hasler, Jul 02 2016
from sympy.ntheory import divisor_sigma as D print([i for i in range(1, 10000) if D(D(i, 1), 1)%i==0]) # Indranil Ghosh, Mar 17 2017
From _Daniel Forgues_, May 09 2010: (Start) 30240 = 2^5*3^3*5*7 sigma(30240) = (2^6-1)/1*(3^4-1)/2*(5^2-1)/4*(7^2-1)/6 = (63)*(40)*(6)*(8) = (7*3^2)*(2^3*5)*(2*3)*(2^3) = 2^7*3^3*5*7 = (2^2) * (2^5*3^3*5*7) = 4 * 30240 (End)
AbundantQ[n_]:=DivisorSigma[1, n]==4*n;a={};Do[If[AbundantQ[n], AppendTo[a, n]], {n, 10^6}];a (* Vladimir Joseph Stephan Orlovsky, Aug 16 2008 *)
From _Daniel Forgues_, May 09 2010: (Start) 14182439040 = 2^7*3^4*5*7*11^2*17*19 sigma(14182439040) = (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18 = (255)*(121)*(6)*(8)*(133)*(18)*(20) = (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5) = 2^7*3^4*5^2*7*11^2*17*19 = (5) * (2^7*3^4*5*7*11^2*17*19) = 5 * 14182439040 (End)
is(n)=sigma(n)==5*n \\ Charles R Greathouse IV, Apr 05 2013
A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *) Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
from sympy import divisor_sigma print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017
The abundance of 12 is A033880(12) = 4, which is a proper divisor of 12, so 12 is in the sequence.
q:= n-> (t-> t>0 and tAlois P. Heinz, May 11 2023
Select[Range[550000], 0 < (d = DivisorSigma[1, #] - 2*#) < # && Divisible[#, d] &] (* Amiram Eldar, May 12 2023 *)
is_A181595(n)=my(d=sigma(n)-2*n); (d>0) && (dA181595(n)&&print1(n",")) \\ M. F. Hasler, Apr 14 2012; corrected by Michel Marcus, May 12 2023
Table[k = 1; While[DivisorSigma[1, k]/k != n, k++]; k, {n, 4}] (* Michael De Vlieger, Jun 20 2015 *)
a(n)=k=1;while((sigma(k)/k)!=n,k++);k vector(4,n,a(n)) \\ Derek Orr, Jun 19 2015
Comments