A072002
Highest prime dividing the least n-multiperfect number (A007539).
Original entry on oeis.org
3, 5, 7, 19, 257, 599479, 649657
Offset: 2
A000396
Perfect numbers k: k is equal to the sum of the proper divisors of k.
Original entry on oeis.org
6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1
6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
- Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
- Euclid, Elements, Book IX, Section 36, about 300 BC.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
- T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
- Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
- József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
- Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
- André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.
- E-Hern Lee, Table of n, a(n) for n = 1..15 (terms 1-14 from David Wasserman)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Anonymous, Perfect Numbers. [broken link]
- Anonymous, Timetable of discovery of perfect numbers. [broken link]
- Antal Bege and Kinga Fogarasi, Generalized perfect numbers, arXiv:1008.0155 [math.NT], 2010.
- Chris Bispels, Matthew Cohen, Joshua Harrington, Joshua Lowrance, Kaelyn Pontes, Leif Schaumann, and Tony W. H. Wong, A further investigation on covering systems with odd moduli, arXiv:2507.16135 [math.NT], 2025. See p. 3.
- Richard P. Brent and Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comp., Vol. 53, No. 187 (1989), pp. 431-437, S7; alternative link.
- Richard P. Brent, Graeme L. Cohen and Herman J. J. te Riele, A new approach to lower bounds for odd perfect numbers, Report TR-CS-88-08, CSL, ANU, August 1988, 71 pp.
- Richard P. Brent, Graeme L. Cohen and Herman J. J. te Riele, Improved Techniques For Lower Bounds For Odd Perfect Numbers, Math. Comp., Vol. 57, No. 196 (1991), pp. 857-868.
- J. Britton, Perfect Number Analyser.
- Chris K. Caldwell, Perfect number.
- Chris K. Caldwell, Mersenne Primes, etc.
- Chris K. Caldwell, Iterated sums of the digits of a perfect number converge to 1.
- Jose Arnaldo B. Dris, The Abundancy Index of Divisors of Odd Perfect Numbers, J. Int. Seq., Vol. 15 (2012) Article # 12.4.4.
- Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal, Vol. 14, No. 1 (2004), p. 243.
- Roger B. Eggleston, Equisum Partitions of Sets of Positive Integers, Algorithms, Vol. 12, No. 8 (2019), Article 164.
- Leonhard Euler, De numeris amicibilibus>, Commentationes arithmeticae collectae, Vol. 2 (1849), pp. 627-636. Written in 1747.
- Bakir Farhi, On the representation of an even perfect number as the sum of a limited number of cubes, arXiv:1504.07322 [math.NT], 2015.
- Steven Finch, Amicable Pairs and Aliquot Sequences, 2013. [Cached copy, with permission of the author]
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.1.
- S. Flora Jeba, Anirban Roy, and Manjil P. Saikia, On k-Facile Perfect Numbers, Algebra and Its Applications (ICAA-2023) Springer Proc. Math. Stat., Vol. 474, 111-121. See p. 111.
- J. W. Gaberdiel, A Study of Perfect Numbers and Related Topics.
- Takeshi Goto and Yasuo Ohno, Largest prime factor of an odd perfect number, 2006.
- Kevin G. Hare, New techniques for bounds on the total number of prime factors of an odd perfect number, Math. Comp., Vol. 76, No. 260 (2007), pp. 2241-2248; arXiv preprint, arXiv:math/0501070 [math.NT], 2005-2006.
- Azizul Hoque and Himashree Kalita, Generalized perfect numbers connected with arithmetic functions, Math. Sci. Lett., Vol. 3, No. 3 (2014), pp. 249-253.
- C.-E. Jean, "Recreomath" Online Dictionary, Nombre parfait.
- Hans-Joachim Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Mathematische Zeitschrift, Vol. 61 (1954), pp. 180-185.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, The Ramanujan Journal, Vol. 46, No. 3 (2018), pp. 633-655; arXiv preprint, arXiv:1610.07793 [math.NT], 2016.
- Pedro Laborde, A Note on the Even Perfect Numbers, The American Mathematical Monthly, Vol. 62, No. 5 (May, 1955), pp. 348-349 (2 pages).
- Tom Leinster, Perfect numbers and groups, arXiv:math/0104012 [math.GR], 2001.
- A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev.
- Daniel Lustig, The algebraic independence of the sum of divisors functions, Journal of Number Theory, Volume 130, Issue 11 (November 2010), pp. 2628-2633.
- T. Masiwa, T. Shonhiwa & G. Hitchcock, Perfect Numbers & Mersenne Primes.
- Mathforum, Perfect Numbers.
- Mathforum, List of Perfect Numbers.
- Judson S. McCranie, A study of hyperperfect numbers, J. Int. Seqs., Vol. 3 (2000), Article #00.1.3.
- Gérard P. Michon, Perfect Numbers, Mersenne Primes.
- David Moews, Perfect, amicable and sociable numbers.
- Derek Muller, The Oldest Unsolved Problem in Math, Veritasium, YouTube video, 2024.
- Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Mathematics of Computation, Vol. 76, No. 260 (2007), pp. 2109-2126; arXiv preprint, arXiv:math/0602485 [math.NT], 2006.
- Walter Nissen, Abundancy : Some Resources , 2008-2010.
- J. J. O'Connor and E. F. Robertson, Perfect Numbers.
- J. O. M. Pedersen, Perfect numbers. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
- Ivars Peterson, Cubes of Perfection, MathTrek, 1998.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Paul Pollack, Quasi-Amicable Numbers are Rare, J. Int. Seq., Vol. 14 (2011), Article # 11.5.2.
- D. Romagnoli, Perfect Numbers (Text in Italian). [From _Lekraj Beedassy_, Jun 26 2009]
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 3.
- D. Scheffler and R. Ondrejka, The numerical evaluation of the eighteenth perfect number, Math. Comp., Vol. 14, No. 70 (1960), pp. 199-200.
- K. Schneider, perfect number, PlanetMath.org.
- Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240; arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
- G. Villemin's Almanach of Numbers, Nombres Parfaits.
- J. Voight, Perfect Numbers:An Elementary Introduction.
- Eric Weisstein's World of Mathematics, Perfect Number.
- Eric Weisstein's World of Mathematics, Odd Perfect Number.
- Eric Weisstein's World of Mathematics, Multiperfect Number.
- Eric Weisstein's World of Mathematics, Hyperperfect Number.
- Eric Weisstein's World of Mathematics, Abundance.
- Wikipedia, Perfect number.
- Tomohiro Yamada, On the divisibility of odd perfect numbers by a high power of a prime, arXiv:math/0511410 [math.NT], 2005-2007.
- Joshua Zelinsky, The Sum of the Reciprocals of the Prime Divisors of an Odd Perfect or Odd Primitive Non-deficient Number, Integers (2025) Vol. 25, Art. No. A59. See p. 1.
- Index entries for "core" sequences
- Index entries for sequences where any odd perfect numbers must occur
See
A000043 for the current state of knowledge about Mersenne primes.
Cf.
A007539,
A005820,
A027687,
A046060,
A046061,
A000668,
A090748,
A133033,
A000217,
A000384,
A019279,
A061652,
A006516,
A144912,
A153800,
A007593,
A220290,
A028499-
A028502,
A034916,
A065549,
A275496,
A063752,
A156552,
A152921,
A324201.
Cf.
A228058 for Euler's criterion for odd terms.
Subsequence of following sequences:
A005835,
A006039,
A007691,
A023196,
A043305,
A065997,
A083207,
A109510,
A118372,
A216782,
A246282,
A263837,
A294900,
A333646,
A334410,
A335267,
A336702,
A341622,
A342922,
A344755,
A352739,
A357462, and (the even terms), of:
A005153,
A063752,
A174973,
A336547,
A338520.
-
a000396 n = a000396_list !! (n-1)
a000396_list = [x | x <- [1..], a000203 x == 2 * x]
-- Reinhard Zumkeller, Jan 20 2012
-
Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *)
PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
-
isA000396(n) = (sigma(n) == 2*n);
-
from sympy import divisor_sigma
def ok(n): return n > 0 and divisor_sigma(n) == 2*n
print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022
I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. -
N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by
Harvey P. Dale, Jan 13 2025
A007691
Multiply-perfect numbers: n divides sigma(n).
Original entry on oeis.org
1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1
120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.
- T. D. Noe, Table of n, a(n) for n=1..1600 (using Flammenkamp's data)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Anonymous, Multiply Perfect Numbers [broken link]
- Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors perfect numbers and factoring, SIAM J. Comput. 15:4 (1986), pp. 1143-1154.
- Robert D. Carmichael, A table of multiply perfect numbers, Bull. Amer. Math. Soc. 13 (1907), 383-386.
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373.
- Walter Nissen, Abundancy : Some Resources
- Kaitlin Rafferty and Judy Holdener, On the form of perfect and multiperfect numbers, Pi Mu Epsilon Journal, Vol. 13, No. 5 (Fall 2011), pp. 291-298.
- Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017. See p. 11.
- Eric Weisstein's World of Mathematics, Abundancy
- Eric Weisstein's World of Mathematics, Hyperperfect Number.
- Index entries for sequences where any odd perfect numbers must occur
Other subsequences:
A046985,
A046986,
A046987,
A047728,
A065997,
A066289, (
A076231,
A076233,
A076234),
A088844,
A088845,
A088846,
A091443,
A114887,
A166069,
A245782,
A260508,
A306667, (
A325021 U
A325022), (
A325023 U
A325024), (
A325025 U
A325026),
A325637,
A323653,
A330532, (
A330533 U
A331724),
A336702,
A341045.
Subsequence of the following sequences:
A011775,
A071707,
A083865,
A089748 (after the initial 1),
A102783,
A166070,
A175200,
A225110,
A226476,
A237719,
A245774,
A246454,
A259307,
A263928,
A282775,
A323652,
A336745,
A340864. Also conjectured to be a subsequence of
A005153, of
A307740, and after 1 also of
A295078.
Various number-theoretical functions applied to these numbers:
A088843 [tau],
A098203 [phi],
A098204 [gcd(a(n),phi(a(n)))],
A134665 [2-adic valuation],
A307741 [sigma],
A308423 [product of divisors],
A320024 [the odd part],
A134740 [omega],
A342658 [bigomega],
A342659 [smallest prime not dividing],
A342660 [largest prime divisor].
Positions of ones in
A017666,
A019294,
A094701,
A227470, of zeros in
A054024,
A082901,
A173438,
A272008,
A318996,
A326194,
A341524. Fixed points of
A009194.
Cf.
A007358,
A189000,
A327158,
A332318/
A332319 (for analogs) and
A046762,
A046763,
A046764,
A055715,
A056006,
A081756,
A214842,
A227302,
A227306,
A245775,
A300906,
A325639 (other variants).
Cf. (other related sequences)
A007539,
A066135,
A066961,
A093034,
A094467,
A134639,
A145551,
A019278,
A194771 [= 2*a(n)],
A219545,
A229110,
A262432,
A335830,
A336849,
A341608.
-
a007691 n = a007691_list !! (n-1)
a007691_list = filter ((== 1) . a017666) [1..]
-- Reinhard Zumkeller, Apr 06 2012
-
Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
(* Third program: *)
Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
-
for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
-
from sympy import divisor_sigma as sigma
def ok(n): return sigma(n, 1)%n == 0
print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
Incorrect comment removed and the crossrefs-section reorganized by
Antti Karttunen, Mar 20 2021
A005820
3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.
Original entry on oeis.org
120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1
120 = 2^3*3*5; sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
- David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Kevin A. Broughan and Qizhi Zhou, Divisibility by 3 of even multiperfect numbers of abundancy 3 and 4, JIS 13 (2010) 10.1.5
- Alfred Brousseau, Number Theory Tables, Fibonacci Association, San Jose, CA, 1973, p. 138.
- Seth Colbert-Pollack, Judy Holdener, Emily Rachfal, and Yanqi Xu, A DIY Project: Construct Your Own Multiply Perfect Number!, Math Horizons, Vol. 28, pp. 20-23, February 2021.
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page [This page contains a lot of useful information, but be careful, not all the statements are correct. For example, it appears to claim that the six terms of this sequence are known to be complete, which is not the case. - _N. J. A. Sloane_, Sep 10 2014]
- James Grime and Brady Haran, The Six Triperfect Numbers, Numberphile video (2018).
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists
- Masao Kishore, Odd Triperfect Numbers, Mathematics of Computation, vol. 42, no. 165, 1984, pp. 231-233.
- Gérard P. Michon, Multiperfect and hemiperfect numbers
- Walter Nissen, Abundancy : Some Resources
- N. J. A. Sloane & A. L. Brown, Correspondence, 1974
- Eric Weisstein's World of Mathematics, Multiperfect Number
- Eric Weisstein's World of Mathematics, Sous-Double
- Wikipedia, Multiply perfect number, (section Triperfect numbers)
Cf.
A000203,
A000396,
A007539,
A017665,
A019278,
A027687,
A046060,
A046061,
A068403,
A075701,
A097023,
A171266,
A259302,
A259303,
A306373,
A326051,
A326181,
A329189,
A335141,
A335254,
A347383,
A347391.
-
A005820:=n->`if`(numtheory[sigma](n) = 3*n, n, NULL): seq(A005820(n), n=1..6*10^5); # Wesley Ivan Hurt, Oct 15 2017
-
triPerfectQ[n_] := DivisorSigma[1, n] == 3n; A005820 = {}; Do[If[triPerfectQ[n], AppendTo[A005820, n]], {n, 10^6}]; A005820 (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
Select[Range[10^6],DivisorSigma[1,#]==3#&] (* Harvey P. Dale, Jul 03 2023 *)
-
isok(n) = sigma(n, -1) == 3; \\ Michel Marcus, Nov 22 2015
Wells gives the 6th term as 31001180160, but this is an error.
A027687
4-perfect (quadruply-perfect or sous-triple) numbers: sum of divisors of n is 4n.
Original entry on oeis.org
30240, 32760, 2178540, 23569920, 45532800, 142990848, 1379454720, 43861478400, 66433720320, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408
Offset: 1
Jean-Yves Perrier (nperrj(AT)ascom.ch)
From _Daniel Forgues_, May 09 2010: (Start)
30240 = 2^5*3^3*5*7
sigma(30240) = (2^6-1)/1*(3^4-1)/2*(5^2-1)/4*(7^2-1)/6
= (63)*(40)*(6)*(8)
= (7*3^2)*(2^3*5)*(2*3)*(2^3)
= 2^7*3^3*5*7
= (2^2) * (2^5*3^3*5*7)
= 4 * 30240 (End)
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143.
- T. D. Noe, Table of n, a(n) for n=1..36 (complete sequence from Flammenkamp)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Kevin A. Broughan and Qizhi Zhou, Divisibility by 3 of even multiperfect numbers of abundancy 3 and 4, JIS 13 (2010) 10.1.5
- Seth Colbert-Pollack, Judy Holdener, Emily Rachfal, and Yanqi Xu, A DIY Project: Construct Your Own Multiply Perfect Number!, Math Horizons, Vol. 28, pp. 20-23, February 2021.
- Farideh Firoozbakht and Maxmilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists
- Walter Nissen, Abundancy : Some Resources
- Eric Weisstein's World of Mathematics, Multiperfect Number.
- Eric Weisstein's World of Mathematics, Sous-Triple.
- Wikipedia, Multiply perfect number
A046060
5-multiperfect numbers.
Original entry on oeis.org
14182439040, 31998395520, 518666803200, 13661860101120, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1245087725796543283200, 1802582780370364661760
Offset: 1
From _Daniel Forgues_, May 09 2010: (Start)
14182439040 = 2^7*3^4*5*7*11^2*17*19
sigma(14182439040)
= (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18
= (255)*(121)*(6)*(8)*(133)*(18)*(20)
= (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5)
= 2^7*3^4*5^2*7*11^2*17*19
= (5) * (2^7*3^4*5*7*11^2*17*19)
= 5 * 14182439040 (End)
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143.
- T. D. Noe, Table of n, a(n) for n = 1..65 (complete sequence from Flammenkamp)
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page.
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists.
- Walter Nissen, Abundancy : Some Resources .
- Eric Weisstein's World of Mathematics, Multiperfect Number.
A023199
a(n) is the least k with sigma(k) >= n*k.
Original entry on oeis.org
1, 6, 120, 27720, 122522400, 130429015516800, 1970992304700453905270400, 1897544233056092162003806758651798777216000, 4368924363354820808981210203132513655327781713900627249499856876120704000
Offset: 1
The dominating primes are in
A108402.
Further terms from Devin Kilminster (devin(AT)maths.uwa.edu.au), Mar 10 2003
The term a(10) = 271#23#10! was apparently found independently by
Bodo Zinser and
Don Reble, circa Jul 05 2005
The next term, a(11) = 487#29#10!, was corrected by
Don Reble, Jul 06 2005
a(12) = 857#37#11!42 from
Don Reble, Jul 06 2005
a(14)-a(17) found by
T. D. Noe and rechecked by him Oct 11 2005
a(15) corrected. The conjecture still fails at n=15. -
T. D. Noe, Oct 13 2009
A046061
6-multiperfect numbers.
Original entry on oeis.org
154345556085770649600, 9186050031556349952000, 680489641226538823680000, 6205958672455589512937472000, 13297004660164711617331200000, 15229814702070563916152832000
Offset: 1
From _Daniel Forgues_, May 09 2010: (Start)
154345556085770649600 = 2^15*3^5*5^2*7^2*11*13*17*19*31*43*257
sigma(154345556085770649600) =
(2^16-1)/1*(3^6-1)/2*(5^3-1)/4*(7^3-1)/6*(11^2-1)/10*(13^2-1)/12*(17^2-1)/16*(19^2-1)/18*(31^2-1)/30*(43^2-1)/42*(257^2-1)/256
= 65535*364*31*57*12*14*18*20*32*44*258
= (5*3*17*257)*(2^2*7*13)*(31)*(3*19)*(2^2*3)*(2*7)*(2*3^2)*(2^2*5)*(2^5)*(2^2*11)*(2*3*43)
= 2^16*3^6*5^2*7^2*11*13*17*19*31*43*257
= (2*3) * (2^15*3^5*5^2*7^2*11*13*17*19*31*43*257)
= 6 * 154345556085770649600 (End)
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.
- T. D. Noe, Table of n, a(n) for n = 1..245 (complete sequence from Flammenkamp)
- Farideh Firoozbakht, Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists
- Walter Nissen, Abundancy : Some Resources
- Eric Weisstein's World of Mathematics, Multiperfect Number.
A055153
Numbers k such that sigma(k) = 7k/2.
Original entry on oeis.org
4320, 4680, 26208, 20427264, 197064960, 21857648640, 57575890944, 88898072401645056, 301183421949935616, 9083288595228991885541376, 22290964134962716779872256, 230361837156847526055247872
Offset: 1
Sigma(4320)=15120=7*4320/2, so 4320 is in the sequence.
-
Do[If[DivisorSigma[1, m]==3.5*m, Print[m]], {m, 2*10^8}]
-
is(k)=sigma(k,-1)==7/2 \\ Charles R Greathouse IV, Mar 09 2014
A272930
a(n) is the least k such that sigma(sigma(k)) = n*k, where sigma(n) is the sum of the divisors of n, or 0 if no such k exists.
Original entry on oeis.org
sigma(8) = 15. sigma(15) = 24 = 3*8. Since this does not work for any value smaller than 8, a(3) = 8.
- See the links in A019278. - _Altug Alkan_, May 31 2016 and May 18 2016
-
with(numtheory):
a:=proc(n) local k :
for k while sigma(sigma(k))<>n*k do od : k end: # Robert FERREOL, Apr 11 2018
-
Table[SelectFirst[Range[10^2], Nest[DivisorSigma[1, #] &, #, 2] == n # &], {n, 4}] (* Michael De Vlieger, May 11 2016, Version 10 *)
-
a(n)=my(r=1);while(sigma(sigma(r))!=n*r,r++);r \\ works only if a(n) is not zero.
Showing 1-10 of 23 results.
Comments