cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A108402 Largest prime factor of A023199(n).

Original entry on oeis.org

3, 5, 11, 17, 29, 53, 89, 157, 271, 487, 857, 1487, 2621, 4567, 8011, 13999, 24499, 42901, 75401, 132169, 231431, 406207, 711617, 1247761, 2186941
Offset: 2

Views

Author

Ed Pegg Jr, Jul 04 2005; revised Jul 05 2005

Keywords

Crossrefs

Cf. A023199.

Extensions

271 from Bodo Zinser and Don Reble, Jul 05 2005
857 from Don Reble, Jul 05 2005
1487, 2621, 4561, 8011, 13999 from T. D. Noe, Oct 06 2005
a(15) corrected and sequence extended to a(26) by T. D. Noe, Oct 13 2009

A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1

Views

Author

Keywords

Comments

Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - Keith Briggs, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019

References

  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
  • J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).

Programs

Formula

a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021

Extensions

Name edited by Peter Munn, Mar 13 2019

A119240 Least odd number k such that sigma(k)/k >= n.

Original entry on oeis.org

1, 945, 1018976683725, 1853070540093840001956842537745897243375
Offset: 1

Views

Author

T. D. Noe, May 09 2006

Keywords

Comments

These numbers are a subset of the oddly superabundant numbers, A119239. Laatsch mentions a(3). Pettigrew computes a(4) and a(5), the latter being a 123-digit number.
Pettigrew (link, Tableau 5, p. 21) gives a(5) as 3^6*5^4*7^3*11^2*13^2*17^2*19*...*277. - Jeppe Stig Nielsen, Jul 03 2017

Crossrefs

Cf. A023199 (least number k such that sigma(k)/k >= n).

A103288 Numbers k such that sigma(k) >= 2k-1 (union of perfect, abundant and least deficient numbers).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 128, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220
Offset: 1

Views

Author

Max Alekseyev, Jan 28 2005

Keywords

Comments

If the only least deficient numbers are the powers of 2 (open problem) then this sequence is the union of A023196 and A000079.
Like the abundant numbers, this sequence has density between 0.2474 and 0.2480, see A005101. - Charles R Greathouse IV, Nov 30 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[500], DivisorSigma[1, #] >= 2*# - 1 &] (* Paolo Xausa, Dec 09 2024 *)
  • PARI
    for(n=1,1000,if(sigma(n)>=2*n-1,print(n)));

Formula

Numbers k such that A004125(k) <= A004125(k-1).

A005579 a(n) = smallest number k such that Product_{i=1..k} prime(i)/(prime(i)-1) > n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0

Views

Author

Keywords

Comments

Laatsch (1986) proved that for n >= 2, a(n) gives the smallest number of distinct prime factors in even numbers having an abundancy index > n.
The abundancy index of a number k is sigma(k)/k. - T. D. Noe, May 08 2006
The first differences of this sequence, A005347, begin the same as the Fibonacci sequence A000045. - T. D. Noe, May 08 2006
Equal to A256968 except for n = 2 and n = 3. See comment in A256968. - Chai Wah Wu, Apr 17 2015

Examples

			The products Product_{i=1..k} prime(i)/(prime(i)-1) for k >= 0 start with 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001611 is similar but strictly different.

Programs

  • Mathematica
    (* For speed and accuracy, the second Mathematica program uses 30-digit real numbers and interval arithmetic. *)
    prod=1; k=0; Table[While[prod<=n, k++; prod=prod*Prime[k]/(Prime[k]-1)]; k, {n,0,25}] (* T. D. Noe, May 08 2006 *)
    prod=Interval[1]; k=0; Table[While[Max[prod]<=n, k++; p=Prime[k]; prod=N[prod*p/(p-1),30]]; If[Min[prod]>n, k, "too few digits"], {n,0,38}]
  • PARI
    a(n)=my(s=1,k); forprime(p=2,, s*=p/(p-1); k++; if(s>n, return(k))) \\ Charles R Greathouse IV, Aug 20 2015
    
  • Python
    from sympy import nextprime
    def a_list(upto: int) -> list[int]:
        L: list[int] = [0]
        count = 1; bn = 1; bd = 1; p = 2
        for k in range(1, upto + 1):
            bn *= p
            bd *= p - 1
            while bn > count * bd:
                L.append(k)
                count += 1
            p = nextprime(p)
        return L
    print(a_list(1000))  # Chai Wah Wu, Apr 17 2015, adapted by Peter Luschny, Jan 25 2025

Formula

a(n) = smallest k such that A002110(k)/A005867(k) > n. - Artur Jasinski, Nov 06 2008
a(n) = PrimePi(A091440(n)) = A000720(A091440(n)) for n >= 4. - Amiram Eldar, Apr 18 2025

Extensions

Edited by T. D. Noe, May 08 2006
a(26) added by T. D. Noe, Sep 18 2008
Typo corrected by Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
a(27)-a(36) from Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
Comment corrected by T. D. Noe, Apr 04 2010
a(37)-a(39) from T. D. Noe, Nov 16 2010
Edited and terms a(0)-a(1) prepended by Max Alekseyev, Jan 25 2025

A108775 a(n) = floor(sigma(n)/n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2005

Keywords

Comments

The sequence is unbounded. - Vrabec
First occurrence of k: 1,6,120,27720,..., which is A023199. - Robert G. Wilson v, Jun 28 2005
a(n) > 1 if n is perfect or abundant. a(n) = 2 if n is perfect or primitive abundant (see A091191). - Alonso del Arte, Feb 06 2012

Examples

			a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff.

Crossrefs

Programs

Formula

a(n) = floor(A017665(n)/A017666(n)). - Michel Marcus, Sep 18 2015

Extensions

More terms from Robert G. Wilson v, Jun 28 2005

A215264 Numbers k such that sigma(k) > 5*k.

Original entry on oeis.org

122522400, 147026880, 183783600, 205405200, 220540320, 232792560, 245044800, 273873600, 294053760, 328648320, 367567200, 410810400, 428828400, 441080640, 465585120, 490089600, 492972480, 497296800, 514594080, 537213600, 547747200, 551350800, 563603040
Offset: 1

Views

Author

Donovan Johnson, Aug 07 2012

Keywords

Comments

The asymptotic density of this sequence is > 1/a(1) ~ 8*10^(-9). Wall et al. (1972) proved that it is < 0.0122. - Amiram Eldar, Feb 13 2021

Examples

			sigma(122522400) = 614210688 and 614210688 > 5 * 122522400.
		

Crossrefs

Programs

  • PARI
    for(n=122522400, 563603040, if(sigma(n)>5*n, print1(n ", ")))

Formula

A001221(a(n)) >= 6 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020

A033885 a(n) = 3*n - sum of divisors of n.

Original entry on oeis.org

2, 3, 5, 5, 9, 6, 13, 9, 14, 12, 21, 8, 25, 18, 21, 17, 33, 15, 37, 18, 31, 30, 45, 12, 44, 36, 41, 28, 57, 18, 61, 33, 51, 48, 57, 17, 73, 54, 61, 30, 81, 30, 85, 48, 57, 66, 93, 20, 90, 57, 81, 58, 105, 42, 93, 48, 91, 84, 117, 12, 121, 90, 85, 65, 111, 54, 133, 78, 111, 66
Offset: 1

Views

Author

Keywords

Comments

The first zero term occurs at n = 120. The first negative term is a(180) = -6. For any k, k*n - sigma(n) is negative for some n. See A023199. - T. D. Noe, Aug 07 2003

Examples

			For n=4, 3n=12, sum of divisors of n is 1+2+4=7, so a(4)=12-7=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 150 do printf(`%d,`,3*n-sigma(n)) od:
  • Mathematica
    Table[3 n - DivisorSigma[1, n], {n, 70}] (* Ivan Neretin, Sep 30 2017 *)
  • PARI
    a(n)=3*n-sigma(n) \\ Charles R Greathouse IV, Mar 16 2016

Formula

a(n) = A008585(n) - A000203(n). - Omar E. Pol, Sep 30 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 3 - zeta(2) = 1.355065... . - Amiram Eldar, Mar 25 2024

Extensions

More terms from James Sellers, Jun 01 2000

A067385 a(n) is smallest x such that sigma(phi(x))/sigma(x) = n.

Original entry on oeis.org

1, 13, 181, 121679, 1033474069
Offset: 1

Views

Author

Dean Hickerson, Jan 20 2002

Keywords

Comments

A023199(6) < a(6) <= 1794819234390989. - Donovan Johnson, Oct 24 2011

Crossrefs

Programs

  • Mathematica
    a[ n_ ] := For[ x=1, True, x++, If[ DivisorSigma[ 1, EulerPhi[ x ] ]/DivisorSigma[ 1, x ]==n, Return[ x ] ] ]

Extensions

a(5) from Vim Wenders, Mar 11 2007

A358412 Least number k coprime to 2 and 3 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 5391411025, 5164037398437051798923642083026622326955987448536772329145127064375
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 5^2*7*...*29 and a(3) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66. a(4) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370 is too large to display.

Examples

			a(2) = A047802(2) = 5391411025 is the smallest abundant number coprime to 2 and 3.
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 33, and we have k >= prime(3)^2*...*prime(35)^2 ~ 6.18502*10^112 > A358413(2) ~ 5.16403*10^66. So a(3) = A358413(2).
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 140, and we have k >= prime(3)^2*...*prime(140)^2*prime(141)*prime(142) ~ 2.65585*10^669 > A358414(2) ~ 1.83947*10^370. So a(4) = A358414(2).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), this sequence (p=5), A358418 (p=7), A358419 (p=11).
Showing 1-10 of 24 results. Next