cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A307115 Primitive 5-abundant numbers: Numbers k such that sigma(k) > 5k (A215264) all of whose proper divisors d are 5-deficient numbers (having sigma(d) < 5d).

Original entry on oeis.org

122522400, 147026880, 183783600, 205405200, 220540320, 232792560, 273873600, 328648320, 428828400, 492972480, 497296800, 514594080, 537213600, 563603040, 575134560, 581981400, 605404800, 627026400, 629909280, 670269600, 684684000, 710629920, 739458720, 745945200
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2019

Keywords

Comments

Analogous to A071395 with abundancy index 5 instead of 2.
omega(a(n)) = A001221(a(n)) >= 6. - David A. Corneth, Mar 26 2019

References

  • Paul Erdős and János Surányi, Topics in the Theory of Numbers, New York: Springer, 2003, p. 243.

Crossrefs

Programs

  • Mathematica
    Select[Range@500000000, DivisorSigma[1, #] > 5 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 5 # &, Most@ Divisors@ #] == 1 &] (* after Michael De Vlieger at A071395 *)

A068403 Numbers k such that sigma(k) > 3*k.

Original entry on oeis.org

180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

Davenport shows that these numbers have positive density. Are there good bounds for the density?
G. Miller & M. Whalen suggested that 1018976683725 (3^3*5^2*7^2*11*13*17*19*23*29) might be the smallest odd number in the sequence (a fact now, see A119240 and A023197). - Michel Marcus, May 01 2013
From Amiram Eldar, Feb 13 2021: (Start)
Behrend (1933) found the bounds (0.009, 0.110) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0186, 0.0461).
The upper bound was reduced to 0.0214614 using Deléglise's method by McDaniel College (2010). (End)
Note that 1018976683725, the smallest odd term in this sequence, is A053624(51). - Charles R Greathouse IV, Jan 09 2025

References

  • Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

Crossrefs

Terms not divisible by 6 are in A126104.
Cf. A005820 (3-perfect numbers).

Programs

  • Maple
    A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
    Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
  • PARI
    for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisor_sigma
    print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017

Formula

A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
a(n) ~ k*n for some constant k with 46 < k < 54. - Charles R Greathouse IV, Jan 21 2025

A068404 Numbers k such that sigma(k) > 4*k.

Original entry on oeis.org

27720, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800, 191520
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

This sequence is of positive density, see for example Davenport. The density is between 0.000176 and 0.004521 according to the McDaniel College link. - Charles R Greathouse IV, Sep 07 2012
From Amiram Eldar, Feb 13 2021: (Start)
Behrend (1933) found the bounds (0.00003, 0.025) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0001, 0.0147).
Using Deléglise's method the upper bound for the density found by McDaniel College is 0.000679406. (End)

References

  • Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

Crossrefs

Cf. A027687 (4-perfect numbers).

Programs

  • Mathematica
    Select[Range[27720,9!,60], 4*#Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)

Formula

A001221(a(n)) >= 4 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020

A230608 Numbers with abundancy 4 <= sigma(n)/n < 5.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800, 191520, 194040
Offset: 1

Views

Author

Jaroslav Krizek, Nov 29 2013

Keywords

Comments

A subsequence of A023198 (numbers with abundancy >= 4). It differs from A023198 from a(31093) on: The term A023198(31093) = 122522400 = A023199(5) = A215264(1) is not in this sequence. It excludes all terms of A215264, but also the 5-perfect numbers A046060, which are neither in this sequence nor in A215264. [Corrected by M. F. Hasler, Dec 05 2013]
A108775(a(n)) = 4.
There are 31092 terms less than 122522399. - T. D. Noe, Dec 04 2013

Examples

			27720 is in sequence because sigma(27720) / 27720 = 112320 / 27720 = 4.0519....
		

Crossrefs

Cf. A005100 (deficient numbers with abundancy 1 <= a < 2),
Cf. A204829 (numbers with abundancy 2 <= a < 3),
Cf. A204828 (abundant numbers with abundancy 3 <= a < 4).
Cf. A215264 (abundant numbers with abundancy > 5).

Programs

  • Mathematica
    Select[Range[200000], 4 <= DivisorSigma[1, #]/# < 5 &] (* T. D. Noe, Dec 04 2013 *)

Extensions

Corrected and edited by M. F. Hasler, Dec 05 2013

A291459 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 5.

Original entry on oeis.org

294053760, 575134560, 739458720, 882161280, 1193512320, 1314593280, 1725403680, 2539555200, 2588105520, 2646483840, 2711348640, 3008396160, 3891888000, 4053329280, 4214770560, 4648644000, 4802878080, 5176211040, 5194949760, 5258373120, 6470263800, 6768891360, 7900532640
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).
Subset of A215264.

Examples

			One of the proper divisors of 294053760 is 2056320 and sigma(294053760) - 5*2056320 = 1480550400 - 10281600 = 1470268800 = 5*294053760.
One of the proper divisors of 3891888000 is 314496 and sigma(3891888000) - 5*314496 = 19461012480 - 1572480 = 19459440000 = 5*3891888000.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^10,5);

A335030 Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

None of the terms are superabundant (A004394) since all the superabundant numbers are practical numbers (A005153).
The least term m that is k-abundant (having sigma(m)/m > k) for k = 2, 3, ... is A005101(14) = 70, A068403(896) = 44040, A068404(792087) = 3113704440, ...
What is the least 5-abundant number (A215264) that is not practical?

Examples

			The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A226589 Numbers k such that sigma(k) >= sigma(k-2) + sigma(k-1) + sigma(k+1) + sigma(k+2).

Original entry on oeis.org

183783600, 232792560, 273873600, 367567200, 410810400, 441080640, 465585120, 547747200, 551350800, 575134560, 612612000, 616215600, 698377680, 735134400, 745945200, 821620800, 845404560, 882161280, 908107200, 931170240, 944863920, 958557600, 1102701600, 1127206080
Offset: 1

Views

Author

Alex Ratushnyak, Jun 12 2013

Keywords

Comments

Among first 1000 terms all are such that sigma(k) > sigma(k-2) + sigma(k-1) + sigma(k+1) + sigma(k+2). - Alex Ratushnyak, Jun 16 2013

Examples

			Sigma(183783598...183783602) = {275675400, 194528880, 929940480, 183783602, 275737500}. Because 929940480 > 275675400 + 194528880 + 183783602 + 275737500, 183783600 is in the sequence.
		

Crossrefs

Showing 1-7 of 7 results.