A307114 Primitive 4-abundant numbers: Numbers k such that sigma(k) > 4k (A068404) all of whose proper divisors d are 4-deficient numbers (having sigma(d) < 4d).
27720, 50400, 75600, 85680, 95760, 105840, 115920, 120120, 128520, 141120, 143640, 176400, 180180, 184800, 205920, 207900, 214200, 218400, 235620, 239400, 264600, 289800, 292320, 299880, 308880, 312480, 314160, 351120, 371280, 372960, 414960, 425040, 438480
Offset: 1
Keywords
References
- Paul Erdős and János Surányi, Topics in the Theory of Numbers, New York: Springer, 2003, p. 243.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Graeme L. Cohen, Primitive alpha-abundant numbers, Mathematics of Computation, Vol. 43, No. 167 (1984), pp. 263-270.
- Paul Erdős, On additive arithmetical functions and applications of probability to number theory, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, Vol. 3 (1956), pp. 13-19.
- Paul Erdős, Remarks on number theory. I: On primitive alpha-abundant numbers, Acta Arithmetica., Vol. 5, No. 1 (1959), pp. 25-33, alternative link.
Programs
-
Mathematica
Select[Range@500000, DivisorSigma[1, #] > 4 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 4 # &, Most@ Divisors@ #] == 1 &] (* after Michael De Vlieger at A071395 *)
Comments