cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A307114 Primitive 4-abundant numbers: Numbers k such that sigma(k) > 4k (A068404) all of whose proper divisors d are 4-deficient numbers (having sigma(d) < 4d).

Original entry on oeis.org

27720, 50400, 75600, 85680, 95760, 105840, 115920, 120120, 128520, 141120, 143640, 176400, 180180, 184800, 205920, 207900, 214200, 218400, 235620, 239400, 264600, 289800, 292320, 299880, 308880, 312480, 314160, 351120, 371280, 372960, 414960, 425040, 438480
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2019

Keywords

Comments

Analogous to A071395 with abundancy index 4 instead of 2.

References

  • Paul Erdős and János Surányi, Topics in the Theory of Numbers, New York: Springer, 2003, p. 243.

Crossrefs

Programs

  • Mathematica
    Select[Range@500000, DivisorSigma[1, #] > 4 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 4 # &, Most@ Divisors@ #] == 1 &] (* after Michael De Vlieger at A071395 *)

A068403 Numbers k such that sigma(k) > 3*k.

Original entry on oeis.org

180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

Davenport shows that these numbers have positive density. Are there good bounds for the density?
G. Miller & M. Whalen suggested that 1018976683725 (3^3*5^2*7^2*11*13*17*19*23*29) might be the smallest odd number in the sequence (a fact now, see A119240 and A023197). - Michel Marcus, May 01 2013
From Amiram Eldar, Feb 13 2021: (Start)
Behrend (1933) found the bounds (0.009, 0.110) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0186, 0.0461).
The upper bound was reduced to 0.0214614 using Deléglise's method by McDaniel College (2010). (End)
Note that 1018976683725, the smallest odd term in this sequence, is A053624(51). - Charles R Greathouse IV, Jan 09 2025

References

  • Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

Crossrefs

Terms not divisible by 6 are in A126104.
Cf. A005820 (3-perfect numbers).

Programs

  • Maple
    A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
    Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
  • PARI
    for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisor_sigma
    print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017

Formula

A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
a(n) ~ k*n for some constant k with 46 < k < 54. - Charles R Greathouse IV, Jan 21 2025

A023198 Numbers k such that sigma(k) >= 4*k.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800
Offset: 1

Views

Author

Keywords

Comments

Called 4-abundant numbers. The first odd number is A119240(4) = 1853070540093840001956842537745897243375. - T. D. Noe, Mar 31 2011

References

  • Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000, p 260.

Crossrefs

Union of A027687 and A068404.

Programs

A215264 Numbers k such that sigma(k) > 5*k.

Original entry on oeis.org

122522400, 147026880, 183783600, 205405200, 220540320, 232792560, 245044800, 273873600, 294053760, 328648320, 367567200, 410810400, 428828400, 441080640, 465585120, 490089600, 492972480, 497296800, 514594080, 537213600, 547747200, 551350800, 563603040
Offset: 1

Views

Author

Donovan Johnson, Aug 07 2012

Keywords

Comments

The asymptotic density of this sequence is > 1/a(1) ~ 8*10^(-9). Wall et al. (1972) proved that it is < 0.0122. - Amiram Eldar, Feb 13 2021

Examples

			sigma(122522400) = 614210688 and 614210688 > 5 * 122522400.
		

Crossrefs

Programs

  • PARI
    for(n=122522400, 563603040, if(sigma(n)>5*n, print1(n ", ")))

Formula

A001221(a(n)) >= 6 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020

A358414 Smallest 4-abundant number (sigma(x) > 4x) which is not divisible by any of the first n primes.

Original entry on oeis.org

27720, 1853070540093840001956842537745897243375
Offset: 0

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(0) = 2^3*3^2*5*7*11 and a(1) = 3^5*5^3*7^2*11^2*13*...*89 ~ 1.85307*10^39. a(2) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370, a(3) = 7^5*11^3*13^3*17^3*19^3*23^2*...*97^2*101*...*4561 ~ 1.11116*10^1986, and a(4) = 11^4*13^4*17^3*19^3*23^3*29^3*31^3*37^2*...*181^2*191*...*18493 ~ 2.99931*10^8063 are too large to display.

Examples

			a(1) = A119240(4) = 1853070540093840001956842537745897243375 is the smallest 4-abundant odd number.
a(2) = A358412(4) ~ 1.83947*10^370 is the smallest 4-abundant number that is coprime to 2 and 3.
		

Crossrefs

Cf. A068404 (4-abundant numbers).
Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), this sequence (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), A358419 (p=11).

A380848 Numbers k such that A380845(k) = 4*k.

Original entry on oeis.org

123832800, 247695840, 268337160, 495421920, 536707080, 990874080, 1073446920, 1981778400, 2146926600, 3963587040, 4293885960, 7927204320, 8587804680, 15854438880, 17175642120, 31708908000, 34351317000, 63417846240, 68702666760, 124884879840, 126713795040, 126835722720
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2025

Keywords

Comments

Analogous to 4-perfect numbers (A027687) with A380845 instead of A000203.
All the terms are 4-abundant numbers (A068404), because A380845(k) <= A000203(k) with equality only when k is a power of 2, and powers of 2 are deficient numbers (A005100).
Are there numbers k such that A380845(k) = m*k for integers m >= 5? There are none below 1.6*10^11.

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] == 4*k]; Select[Range[3*10^8], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) == 4*k;}

Extensions

a(19)-a(22) from Jinyuan Wang, Feb 12 2025

A380931 Numbers k such that A380845(k) > 4*k.

Original entry on oeis.org

5155920, 7733880, 10311840, 15467760, 20623680, 30935520, 41247360, 46403280, 61871040, 61901280, 75546240, 82494720, 87693480, 92806560, 103168800, 103194000, 113513400, 123742080, 123802560, 134152200, 140540400, 151092480, 151351200, 162162000, 164989440, 175386960
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to 4-abundant numbers (A068404) with A380845 instead of A000203.

Examples

			5155920 is a term since A380845(5155920) = 21067042 > 4 * 5155920 = 20623680.
		

Crossrefs

Subsequence of A068404, A380929 and A380931.
Similar sequences: A307114, A340110.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 4*k]; Select[Range[10^8], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 4*k;}

A291458 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 4.

Original entry on oeis.org

27720, 60480, 65520, 90720, 98280, 105840, 115920, 120120, 120960, 128520, 131040, 143640, 151200, 163800, 180180, 191520, 205920, 207900, 211680, 218400, 229320, 235620, 241920, 249480, 264600, 272160, 289800, 292320, 312480, 332640, 360360, 372960, 393120, 414960
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 27720 is 360 and sigma(27720) - 4*360 = 112320 - 1440 = 110880 = 4*27720.
One of the proper divisors of 115920 is 144 and sigma(115920) - 4*144 = 464256 - 576 = 463680 = 4*115920.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^9,4);
  • Mathematica
    With[{k = 4}, Select[Range[5 * 10^5], Function[n, AnyTrue[Most@ Divisors@ n, DivisorSigma[1, n] - k # == k n &]]]] (* Michael De Vlieger, Aug 24 2017 *)
    (* or *)
    k=4; Select[Range[5*^5], (t = DivisorSigma[1, #]/k - #; #>t>0 && IntegerQ[t] && Mod[#, t] == 0) &] (* much faster, Giovanni Resta, Aug 25 2017 *)

A335030 Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

None of the terms are superabundant (A004394) since all the superabundant numbers are practical numbers (A005153).
The least term m that is k-abundant (having sigma(m)/m > k) for k = 2, 3, ... is A005101(14) = 70, A068403(896) = 44040, A068404(792087) = 3113704440, ...
What is the least 5-abundant number (A215264) that is not practical?

Examples

			The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A340110 Coreful 4-abundant numbers: numbers k such that csigma(k) > 4*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

10584000, 12700800, 15876000, 19051200, 21168000, 22226400, 25401600, 29635200, 31752000, 37044000, 38102400, 42336000, 44452800, 47628000, 50803200, 52920000, 55566000, 57153600, 59270400, 63504000, 64033200, 66679200, 74088000, 76204800, 79380000, 84672000
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Analogous to A068404 as A308053 is analogous to A005101.

Examples

			10584000 is a term since csigma(10584000) = 42653520 > 4 * 10584000.
		

Crossrefs

Subsequence of A308053 and A340109.
Similar sequences: A068404, A307114.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^8], s[#] > 4*# &]
Showing 1-10 of 10 results.