cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380931 Numbers k such that A380845(k) > 4*k.

Original entry on oeis.org

5155920, 7733880, 10311840, 15467760, 20623680, 30935520, 41247360, 46403280, 61871040, 61901280, 75546240, 82494720, 87693480, 92806560, 103168800, 103194000, 113513400, 123742080, 123802560, 134152200, 140540400, 151092480, 151351200, 162162000, 164989440, 175386960
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to 4-abundant numbers (A068404) with A380845 instead of A000203.

Examples

			5155920 is a term since A380845(5155920) = 21067042 > 4 * 5155920 = 20623680.
		

Crossrefs

Subsequence of A068404, A380929 and A380931.
Similar sequences: A307114, A340110.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 4*k]; Select[Range[10^8], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 4*k;}

A372298 Primitive infinitary abundant numbers (definition 1): infinitary abundant numbers (A129656) whose all proper infinitary divisors are infinitary deficient numbers.

Original entry on oeis.org

40, 56, 70, 72, 88, 104, 756, 924, 945, 1092, 1188, 1344, 1386, 1428, 1430, 1596, 1638, 1760, 1870, 2002, 2016, 2080, 2090, 2142, 2176, 2210, 2394, 2432, 2470, 2530, 2584, 2720, 2750, 2944, 2990, 3040, 3128, 3190, 3200, 3230, 3250, 3400, 3410, 3496, 3712, 3770
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			40 is a term since it is an infinitary abundant number and all its proper infinitary divisors, {1, 2, 4, 5, 8, 10, 20}, are infinitary deficient numbers.
24 and 30, which are infinitary abundant numbers, are not primitive, because they are divisible by 6 which is an infinitary perfect number.
		

Crossrefs

Subsequence of A129656 and A372299.
A372300 is a subsequence.
Similar sequences: A071395, A298973, A302573, A307112, A307114, A307115.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; idefQ[n_] := isigma[n] < 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], idefQ]]; Select[Range[4000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) >= 2*x, idivs(n)) == [];

A340110 Coreful 4-abundant numbers: numbers k such that csigma(k) > 4*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

10584000, 12700800, 15876000, 19051200, 21168000, 22226400, 25401600, 29635200, 31752000, 37044000, 38102400, 42336000, 44452800, 47628000, 50803200, 52920000, 55566000, 57153600, 59270400, 63504000, 64033200, 66679200, 74088000, 76204800, 79380000, 84672000
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Analogous to A068404 as A308053 is analogous to A005101.

Examples

			10584000 is a term since csigma(10584000) = 42653520 > 4 * 10584000.
		

Crossrefs

Subsequence of A308053 and A340109.
Similar sequences: A068404, A307114.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^8], s[#] > 4*# &]

A307111 a(n) is the least primitive n-abundant number k with the largest possible abundancy index sigma(k)/k.

Original entry on oeis.org

3465, 6930, 19399380, 8172244080
Offset: 2

Views

Author

Amiram Eldar, Mar 25 2019

Keywords

Comments

A primitive n-abundant number k is a number with sigma(k)/k > n and sigma(d)/d < n for all the proper divisors d of k.
Cohen proved that for any given eps > 0 there are only finitely many primitive n-abundant numbers k with sigma(k)/k >= n + eps. Thus for each n there is a maximal value of the abundancy index sigma(k)/k for primitive n-abundant numbers k. If this maximum occurs at more than one number the least of them is given in this sequence.

Examples

			3465 is in the sequence since it is the primitive abundant (A071395) number with the largest possible abundancy index among the primitive abundant numbers: sigma(3465)/3465 = 832/385 = 2.161003... The abundancy indices of the next terms are 1248/385 = 3.241558..., 193536/46189 = 4.190088..., 642816/124729 = 5.153701...
		

Crossrefs

Showing 1-4 of 4 results.