A380931
Numbers k such that A380845(k) > 4*k.
Original entry on oeis.org
5155920, 7733880, 10311840, 15467760, 20623680, 30935520, 41247360, 46403280, 61871040, 61901280, 75546240, 82494720, 87693480, 92806560, 103168800, 103194000, 113513400, 123742080, 123802560, 134152200, 140540400, 151092480, 151351200, 162162000, 164989440, 175386960
Offset: 1
5155920 is a term since A380845(5155920) = 21067042 > 4 * 5155920 = 20623680.
-
q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 4*k]; Select[Range[10^8], q]
-
isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 4*k;}
A372298
Primitive infinitary abundant numbers (definition 1): infinitary abundant numbers (A129656) whose all proper infinitary divisors are infinitary deficient numbers.
Original entry on oeis.org
40, 56, 70, 72, 88, 104, 756, 924, 945, 1092, 1188, 1344, 1386, 1428, 1430, 1596, 1638, 1760, 1870, 2002, 2016, 2080, 2090, 2142, 2176, 2210, 2394, 2432, 2470, 2530, 2584, 2720, 2750, 2944, 2990, 3040, 3128, 3190, 3200, 3230, 3250, 3400, 3410, 3496, 3712, 3770
Offset: 1
40 is a term since it is an infinitary abundant number and all its proper infinitary divisors, {1, 2, 4, 5, 8, 10, 20}, are infinitary deficient numbers.
24 and 30, which are infinitary abundant numbers, are not primitive, because they are divisible by 6 which is an infinitary perfect number.
-
f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; idefQ[n_] := isigma[n] < 2*n; idivs[1] = {1};
idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], idefQ]]; Select[Range[4000], q]
-
isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) >= 2*x, idivs(n)) == [];
A340110
Coreful 4-abundant numbers: numbers k such that csigma(k) > 4*k, where csigma(k) is the sum of the coreful divisors of k (A057723).
Original entry on oeis.org
10584000, 12700800, 15876000, 19051200, 21168000, 22226400, 25401600, 29635200, 31752000, 37044000, 38102400, 42336000, 44452800, 47628000, 50803200, 52920000, 55566000, 57153600, 59270400, 63504000, 64033200, 66679200, 74088000, 76204800, 79380000, 84672000
Offset: 1
10584000 is a term since csigma(10584000) = 42653520 > 4 * 10584000.
A307111
a(n) is the least primitive n-abundant number k with the largest possible abundancy index sigma(k)/k.
Original entry on oeis.org
3465, 6930, 19399380, 8172244080
Offset: 2
3465 is in the sequence since it is the primitive abundant (A071395) number with the largest possible abundancy index among the primitive abundant numbers: sigma(3465)/3465 = 832/385 = 2.161003... The abundancy indices of the next terms are 1248/385 = 3.241558..., 193536/46189 = 4.190088..., 642816/124729 = 5.153701...
Showing 1-4 of 4 results.
Comments