cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A068403 Numbers k such that sigma(k) > 3*k.

Original entry on oeis.org

180, 240, 360, 420, 480, 504, 540, 600, 660, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

Davenport shows that these numbers have positive density. Are there good bounds for the density?
G. Miller & M. Whalen suggested that 1018976683725 (3^3*5^2*7^2*11*13*17*19*23*29) might be the smallest odd number in the sequence (a fact now, see A119240 and A023197). - Michel Marcus, May 01 2013
From Amiram Eldar, Feb 13 2021: (Start)
Behrend (1933) found the bounds (0.009, 0.110) for the asymptotic density.
Wall et al. (1972) found the bounds (0.0186, 0.0461).
The upper bound was reduced to 0.0214614 using Deléglise's method by McDaniel College (2010). (End)
Note that 1018976683725, the smallest odd term in this sequence, is A053624(51). - Charles R Greathouse IV, Jan 09 2025

References

  • Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

Crossrefs

Terms not divisible by 6 are in A126104.
Cf. A005820 (3-perfect numbers).

Programs

  • Maple
    A068403:=n->`if`((numtheory)[sigma](n) > 3*n, n, NULL): seq(A068403(n), n=1..5*10^3); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Select[Range[180, 2000], 3*# < Plus@@Divisors[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2010 *)
    Select[Range[3000],DivisorSigma[1,#]>3#&] (* Harvey P. Dale, Aug 12 2023 *)
  • PARI
    for(n=1, 3000, if(sigma(n)>3*n, print1(n,", "))) \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import divisor_sigma
    print([n for n in range(180, 3001) if divisor_sigma(n)>3*n]) # Indranil Ghosh, Apr 10 2017

Formula

A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020
a(n) ~ k*n for some constant k with 46 < k < 54. - Charles R Greathouse IV, Jan 21 2025

A023197 Numbers k such that sigma(k) >= 3*k.

Original entry on oeis.org

120, 180, 240, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1080, 1200, 1260, 1320, 1344, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1872, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520
Offset: 1

Views

Author

Keywords

Comments

Sometimes called 3-abundant numbers (but compare the comments in A033880). The first odd number is A119240(3) = 1018976683725. - T. D. Noe, Mar 31 2011

References

  • Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000, p 260.

Crossrefs

See A033880 for definition of k-abundancy.

Programs

Formula

A001221(a(n)) >= 3 (Laatsch, 1986). - Amiram Eldar, Nov 07 2020

A096536 Numbers k such that k, k+1, k+2 are all abundant.

Original entry on oeis.org

171078830, 268005374, 321893648, 336038624, 487389824, 600350750, 663249950, 668645054, 938109248, 1053424448, 1079741024, 1102433408, 1139364224, 1148927624, 1267293950, 1275861950, 1310259950, 1344330350, 1352253824
Offset: 1

Views

Author

John L. Drost, Aug 13 2004

Keywords

Comments

The entries shown are all even, the first odd k would have to have sigma(k*(k+2)) > 4k*(k+2) so k > 10^19 (cf. A119240).
From Amiram Eldar, Oct 02 2022: (Start)
The least term that is == 1 (mod 3) is a(1292) = 55959128224, and the least term that is divisible by 3 is a(1590) = 68972878974.
The numbers of terms not exceeding 10^k, for k = 9, 10, ..., are 9, 226, 2298, 22583, ... . Apparently, the asymptotic density of this sequence exists and equals 2.2...*10^(-8). (End)

Examples

			For 171078830 = 2*5*13*23*29*1973, sigma(n)/n = 2.09355, for 171078831 = 3^3*7*11*19*61*71, sigma(n)/n = 2.00396 and for 171078832 = 2^4*31*344917, sigma(n)/n = 2.00000579.
		

Crossrefs

Subsequence of A005101 and A096399.
Cf. A119240.

Programs

  • PARI
    isab(x) = sigma(x) > 2*x; \\ A005101
    isok(k) = isab(k) && isab(k+1) && isab(k+2); \\ Michel Marcus, Nov 19 2022

Extensions

a(15)-a(19) from Donovan Johnson, Dec 29 2008

A023198 Numbers k such that sigma(k) >= 4*k.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800
Offset: 1

Views

Author

Keywords

Comments

Called 4-abundant numbers. The first odd number is A119240(4) = 1853070540093840001956842537745897243375. - T. D. Noe, Mar 31 2011

References

  • Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000, p 260.

Crossrefs

Union of A027687 and A068404.

Programs

A358412 Least number k coprime to 2 and 3 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 5391411025, 5164037398437051798923642083026622326955987448536772329145127064375
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 5^2*7*...*29 and a(3) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66. a(4) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370 is too large to display.

Examples

			a(2) = A047802(2) = 5391411025 is the smallest abundant number coprime to 2 and 3.
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 33, and we have k >= prime(3)^2*...*prime(35)^2 ~ 6.18502*10^112 > A358413(2) ~ 5.16403*10^66. So a(3) = A358413(2).
Even if there is a number k coprime to 2 and 3 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=3..m+2} (prime(i)/(prime(i)-1)) => m >= 140, and we have k >= prime(3)^2*...*prime(140)^2*prime(141)*prime(142) ~ 2.65585*10^669 > A358414(2) ~ 1.83947*10^370. So a(4) = A358414(2).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), this sequence (p=5), A358418 (p=7), A358419 (p=11).

A358413 Smallest 3-abundant number (sigma(x) > 3x) which is not divisible by any of the first n primes.

Original entry on oeis.org

180, 1018976683725, 5164037398437051798923642083026622326955987448536772329145127064375
Offset: 0

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(0) = 2^2*3^2*5, a(1) = 3^3*5^2*7^2*11*13*17*19*23*29, and a(2) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66. a(3) = 7^3*11^3*13^2*17^2*19^2*23^2*29^2*31*...*569 ~ 2.54562*10^239 and a(4) = 11^3*13^3*17^2*...*47^2*53*...*1597 ~ 3.99515*10^688 are too large to display.

Examples

			a(1) = A119240(3) = 1018976683725 is the smallest 3-abundant odd number.
a(2) = A358412(3) = 5164037398437051798923642083026622326955987448536772329145127064375 is the smallest 3-abundant number that is coprime to 2 and 3.
		

Crossrefs

Cf. A068403 (3-abundant numbers).
Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), this sequence (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), A358419 (p=11).

A119239 Oddly superabundant numbers: odd n with sigma(n)/n > sigma(k)/k for all odd k < n.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 315, 945, 1575, 2835, 3465, 10395, 17325, 31185, 45045, 135135, 225225, 405405, 675675, 2027025, 2297295, 3828825, 6891885, 11486475, 34459425, 43648605, 72747675, 130945815, 218243025, 654729075, 1003917915, 1527701175
Offset: 1

Views

Author

T. D. Noe, May 09 2006

Keywords

Comments

Every oddly colossally abundant number (A110464) is in this sequence.
a(8) = 945 is the first term with abundancy > 2, a(41) = 1018976683725 is the first term with abundancy > 3, and a(141) = 1853070540093840001956842537745897243375 is the first term with abundancy > 4. See A119240. - Antti Karttunen, Jul 21 2025

Crossrefs

Cf. A004394 (superabundant numbers), A005231 (odd abundant numbers), A053624 (highly composite odd numbers), A119240.
Cf. also A171929, A228059, A386423.

Programs

  • Mathematica
    rec=0; lst={}; Do[abun=DivisorSigma[1,n]/n; If[abun>rec, rec=abun; AppendTo[lst,n]], {n,1,10^6,2}]; lst
  • PARI
    r=0;forstep(n=1,1e6,2,t=sigma(n)/n;if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Nov 27 2013

Extensions

Definition clarified by Jonathan Sondow, Dec 08 2011

A358414 Smallest 4-abundant number (sigma(x) > 4x) which is not divisible by any of the first n primes.

Original entry on oeis.org

27720, 1853070540093840001956842537745897243375
Offset: 0

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(0) = 2^3*3^2*5*7*11 and a(1) = 3^5*5^3*7^2*11^2*13*...*89 ~ 1.85307*10^39. a(2) = 5^5*7^4*11^3*13^3*17^2*19^2*23^2*29^2*31^2*37^2*41*...*853 ~ 1.83947*10^370, a(3) = 7^5*11^3*13^3*17^3*19^3*23^2*...*97^2*101*...*4561 ~ 1.11116*10^1986, and a(4) = 11^4*13^4*17^3*19^3*23^3*29^3*31^3*37^2*...*181^2*191*...*18493 ~ 2.99931*10^8063 are too large to display.

Examples

			a(1) = A119240(4) = 1853070540093840001956842537745897243375 is the smallest 4-abundant odd number.
a(2) = A358412(4) ~ 1.83947*10^370 is the smallest 4-abundant number that is coprime to 2 and 3.
		

Crossrefs

Cf. A068404 (4-abundant numbers).
Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), this sequence (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), A358419 (p=11).

A358418 Least number k coprime to 2, 3, and 5 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 20169691981106018776756331
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 7^2*11^2*13*...*67 ~ 2.01697*10^25. a(3) = 7^3*11^3*13^2*17^2*19^2*23^2*29^2*31*...*569 ~ 2.54562*10^239 and a(4) = 7^5*11^3*13^3*17^3*19^3*23^2*...*97^2*101*...*4561 ~ 1.11116*10^1986 are too large to display.

Examples

			a(2) = A047802(3) = 20169691981106018776756331 is the smallest abundant number coprime to 2, 3, and 5.
Even if there is a number k coprime to 2, 3, and 5 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=4..m+3} (prime(i)/(prime(i)-1)) => m >= 97, and we have k >= prime(4)^2*...*prime(100)^2 ~ 2.46692*10^436 > A358413(3) ~ 2.54562*10^239. So a(3) = A358413(3).
Even if there is a number k coprime to 2, 3, and 5 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=4..m+3} (prime(i)/(prime(i)-1)) => m >= 606, and we have k >= prime(4)^2*...*prime(607)^2*prime(608)*prime(609) ~ 6.54355*10^3814 > A358414(3) ~ 1.11116*10^1986. So a(4) = A358414(3).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), this sequence (p=7), A358419 (p=11).

A358419 Least number k coprime to 2, 3, 5, and 7 such that sigma(k)/k >= n.

Original entry on oeis.org

1, 49061132957714428902152118459264865645885092682687973
Offset: 1

Views

Author

Jianing Song, Nov 14 2022

Keywords

Comments

Data copied from the Hi.gher. Space link where Mercurial, the Spectre calculated the terms. We have a(2) = 11^2*13^2*17*...137 ~ 4.90611*10^52. a(3) = 11^3*13^3*17^2*...*47^2*53*...*1597 ~ 3.99515*10^688 and a(4) = 11^4*13^4*17^3*19^3*23^3*29^3*31^3*37^2*...*181^2*191*...*18493 ~ 2.99931*10^8063 are too large to display.

Examples

			a(2) = A047802(4) = 49061132957714428902152118459264865645885092682687973 is the smallest abundant number coprime to 2, 3, 5, and 7.
Even if there is a number k coprime to 2, 3, 5, and 7 with sigma(k)/k = 3, we have that k is a square since sigma(k) is odd. If omega(k) = m, then 3 = sigma(k)/k < Product_{i=5..m+4} (prime(i)/(prime(i)-1)) => m >= 240, and we have k >= prime(5)^2*...*prime(244)^2 ~ 1.60834*10^1297 > A358413(4) ~ 3.99515*10^688. So a(3) = A358413(4).
Even if there is a number k coprime to 2, 3, 5, and 7 with sigma(k)/k = 4, there can be at most 2 odd exponents in the prime factorization of k (see Theorem 2.1 of the Broughan and Zhou link). If omega(k) = m, then 4 = sigma(k)/k < Product_{i=5..m+4} (prime(i)/(prime(i)-1)) => m >= 2096, and we have k >= prime(5)^2*...*prime(2098)^2*prime(2099)*prime(2100) ~ 6.21439*10^15801 > A358414(4) ~ 2.99931*10^8063. So a(4) = A358414(4).
		

Crossrefs

Smallest k-abundant number which is not divisible by any of the first n primes: A047802 (k=2), A358413 (k=3), A358414 (k=4).
Least p-rough number k such that sigma(k)/k >= n: A023199 (p=2), A119240 (p=3), A358412 (p=5), A358418 (p=7), this sequence (p=11).
Showing 1-10 of 12 results. Next