cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A045768 Numbers k such that sigma(k) == 2 (mod k).

Original entry on oeis.org

1, 20, 104, 464, 650, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504
Offset: 1

Views

Author

Keywords

Comments

Equivalently, Chowla function of k is congruent to 1 (mod k).
If p=2^i-3 is prime, then 2^(i-1)*p is a term of the sequence. 650 is in the sequence, but is not of this form.
Terms k from a(2) to a(14) satisfy sigma(k) = 2*k + 2, implying that sigma(k) == 0 (mod k+1). It is not known if this holds in general, for there might be solutions of sigma(k)=3k+2 or 4k+2 or ... (Comments from Jud McCranie and Dean Hickerson, updated by Jon E. Schoenfield, Sep 25 2021 and by Max Alekseyev, May 23 2025).
k | sigma(k) produces the multiperfect numbers (A007691). It is an open question whether k | sigma(k) - 1 iff k is a prime or 1. It is not known if there exist solutions to sigma(k) = 2k+1.
Sequence also gives the nonprime solutions to sigma(k) == 0 (mod k+1), k > 1. - Benoit Cloitre, Feb 05 2002
Sequence seems to give nonprime k such that the numerator of the sum of the reciprocals of the divisors of k equals k+1 (nonprime k such that A017665(k)=k+1). - Benoit Cloitre, Apr 04 2002
For k > 1, composite numbers k such that A108775(k) = floor(sigma(k)/k) = sigma(k) mod k = A054024(k). Complement of primes (A000040) with respect to A230606. There are no numbers k > 2 such that sigma(x) = k*(x+1) has a solution. - Jaroslav Krizek, Dec 05 2013

Examples

			sigma(650) = 1302 == 2 (mod 650).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Numbers k such that A054013(k)=1.

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-2, n]==0, Print[n]], {n, 1, 10^8}]
    Join[{1}, Select[Range[8000000], Mod[DivisorSigma[1, #], #]==2 &]] (* Vincenzo Librandi, Mar 11 2014 *)
  • PARI
    is(n)=sigma(n)%n==2 || n==1 \\ Charles R Greathouse IV, Mar 09 2014

Extensions

More terms from Jud McCranie, Dec 22 1999.
a(11) from Donovan Johnson, Mar 01 2012
a(12) from Giovanni Resta, Apr 02 2014
a(13) from Jud McCranie, Jun 02 2019
Edited and a(14) from Jon E. Schoenfield confirmed by Max Alekseyev, May 23 2025

A284648 Numerator of sum of reciprocals of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 5, 23, 67, 407, 527, 4169, 9913, 33379, 7583, 89461, 102397, 1408777, 1532329, 8238221, 17872837, 316811189, 343357709, 6768841271, 7257705647, 7612437167, 7993370447, 189434541721, 202820113921, 1047296788661, 1090542483461, 3390610314383, 3551237180783, 105395281238707
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2017

Keywords

Comments

The value of (1/n)*Sum_{k=1..n} sigma(k)/k approaches Pi^2/6.

Examples

			1, 5/2, 23/6, 67/12, 407/60, 527/60, 4169/420, 9913/840, 33379/2520, 7583/504, 89461/5544, 102397/5544, 1408777/72072, 1532329/72072, 8238221/360360, ...
		

References

  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer, 2006, Section III.5, p. 82.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99.

Crossrefs

Cf. A000203, A017665, A017666, A108775, A284650 (denominators).

Programs

  • Maple
    with(numtheory): seq(numer(add(sigma(k)/k, k=1..n)), n=1..40); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Numerator[Sum[DivisorSigma[-1, k], {k, 1, n}]], {n, 1, 29}]
    Table[Numerator[Sum[DivisorSigma[1, k]/k, {k, 1, n}]], {n, 1, 29}]
    nmax = 29; Rest[Numerator[CoefficientList[Series[1/(1 - x) Sum[Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x]]]
  • PARI
    for(n=1, 29, print1(numerator(sum(k=1, n, sigma(k)/k)),", ")) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    from sympy import divisor_sigma, Integer
    print([sum(divisor_sigma(k)/Integer(k) for k in range(1, n + 1)).numerator for n in range(1, 30)]) # Indranil Ghosh, Mar 31 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} log(1/(1 - x^k)) (for a(n)/A284650(n), see example).
a(n) = numerator of Sum_{k=1..n} Sum_{d|k} 1/d.
a(n) = numerator of Sum_{k=1..n} sigma(k)/k.
a(n) = numerator of Sum_{k=1..n} floor(n/k)/k. - Ridouane Oudra, Jan 21 2024

A284650 Denominator of sum of reciprocals of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 60, 420, 840, 2520, 504, 5544, 5544, 72072, 72072, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2017

Keywords

Examples

			1, 5/2, 23/6, 67/12, 407/60, 527/60, 4169/420, 9913/840, 33379/2520, 7583/504, 89461/5544, 102397/5544, 1408777/72072, 1532329/72072, 8238221/360360, ...
		

Crossrefs

Cf. A000203, A017665, A017666, A108775, A284648 (numerators).

Programs

  • Maple
    with(numtheory): seq(denom(add(sigma(k)/k, k=1..n)), n=1..40); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Denominator[Sum[DivisorSigma[-1, k], {k, 1, n}]], {n, 1, 29}]
    Table[Denominator[Sum[DivisorSigma[1, k]/k, {k, 1, n}]], {n, 1, 29}]
    nmax = 29; Rest[Denominator[CoefficientList[Series[1/(1 - x) Sum[Log[1/(1 - x^k)], {k, 1, nmax}], {x, 0, nmax}], x]]]
  • PARI
    for(n=1, 29, print1(denominator(sum(k=1, n, sigma(k)/k)),", ")) \\ Indranil Ghosh, Mar 31 2017
    
  • Python
    from sympy import divisor_sigma, Integer
    print([sum(divisor_sigma(k)/Integer(k) for k in range(1, n + 1)).denominator for n in range(1, 30)]) # Indranil Ghosh, Mar 31 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} log(1/(1 - x^k)) (for A284648(n)/a(n), see example).
a(n) = denominator of Sum_{k=1..n} Sum_{d|k} 1/d.
a(n) = denominator of Sum_{k=1..n} sigma(k)/k.
a(n) = denominator of Sum_{k=1..n} floor(n/k)/k. - Ridouane Oudra, Jan 21 2024

A230606 Numbers n such that sigma(n) = k*(n+1) for some integer k.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 104, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Jaroslav Krizek, Nov 29 2013

Keywords

Comments

Numbers n such that A108775(n) = floor(sigma(n) / n) = sigma(n) mod n = A054024(n).
Union primes (A000040) and composite numbers A045768 (k = 1 for primes p, k = 2 for composite numbers).

Examples

			20 is in sequence because sigma(20) = 42 = 2*21.
		

Crossrefs

Cf. A000203(sigma(n)), A054024 (sigma(n) mod n), A108775.
Cf. A045768 (sigma(n) == 2 (mod n)).

Programs

  • Mathematica
    Select[Range[300],Divisible[DivisorSigma[1,#],#+1]&] (* Harvey P. Dale, May 28 2019 *)

Extensions

Example clarified by Harvey P. Dale, May 28 2019

A230608 Numbers with abundancy 4 <= sigma(n)/n < 5.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 141120, 143640, 151200, 163800, 166320, 171360, 176400, 180180, 181440, 184800, 191520, 194040
Offset: 1

Views

Author

Jaroslav Krizek, Nov 29 2013

Keywords

Comments

A subsequence of A023198 (numbers with abundancy >= 4). It differs from A023198 from a(31093) on: The term A023198(31093) = 122522400 = A023199(5) = A215264(1) is not in this sequence. It excludes all terms of A215264, but also the 5-perfect numbers A046060, which are neither in this sequence nor in A215264. [Corrected by M. F. Hasler, Dec 05 2013]
A108775(a(n)) = 4.
There are 31092 terms less than 122522399. - T. D. Noe, Dec 04 2013

Examples

			27720 is in sequence because sigma(27720) / 27720 = 112320 / 27720 = 4.0519....
		

Crossrefs

Cf. A005100 (deficient numbers with abundancy 1 <= a < 2),
Cf. A204829 (numbers with abundancy 2 <= a < 3),
Cf. A204828 (abundant numbers with abundancy 3 <= a < 4).
Cf. A215264 (abundant numbers with abundancy > 5).

Programs

  • Mathematica
    Select[Range[200000], 4 <= DivisorSigma[1, #]/# < 5 &] (* T. D. Noe, Dec 04 2013 *)

Extensions

Corrected and edited by M. F. Hasler, Dec 05 2013

A272008 a(n) is the numerator of the fractional part of sigma(n)/n, where sigma(n) is the sum of the divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 0, 1, 7, 4, 4, 1, 1, 1, 5, 3, 15, 1, 1, 1, 1, 11, 7, 1, 1, 6, 8, 13, 0, 1, 2, 1, 31, 5, 10, 13, 19, 1, 11, 17, 1, 1, 2, 1, 10, 11, 13, 1, 7, 8, 43, 7, 23, 1, 2, 17, 1, 23, 16, 1, 4, 1, 17, 41, 63, 19, 2, 1, 29, 9, 2, 1, 17, 1, 20, 49, 16, 19, 2, 1, 13, 40
Offset: 1

Views

Author

Michel Marcus, May 10 2016

Keywords

Comments

a(n) = 0 when n is a multiply-perfect number (A007691).
a(n) = 1 when n is a prime or if n belongs to A215012.

Examples

			The sum of divisors of 4 is 7; its abundancy is 7/4 = 1 + 3/4 so a(4) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Numerator[FractionalPart[DivisorSigma[1, n]/n]]; Array[f, 81] (* Robert G. Wilson v, Nov 24 2016 *)
  • PARI
    a(n) = my(ab = sigma(n)/n); numerator(ab) % denominator(ab);

Formula

a(n) = A017665(n) mod A017666(n).

A087233 a(n) = floor(sigma(A002110(n))/A002110(n)); integer quotient of divisor-sum of primorial numbers and primorials.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Labos Elemer, Sep 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]]; q[0]=1; Table[Floor[DivisorSigma[1, a=q[u]]/q[u]//N], {u, 1, 300}]
    seq[nmax_] := Floor[FoldList[Times, 1, 1 + 1/Prime[Range[nmax]]]]; seq[100] (* Amiram Eldar, Aug 10 2024 *)
  • PARI
    a(n) = floor(vecprod(apply(x -> 1 + 1/x, primes(n)))); \\ Amiram Eldar, Aug 10 2024

Formula

From Amiram Eldar, Aug 10 2024: (Start)
a(n) = A108775(A002110(n)).
a(n) = floor(A054640(n)/A002110(n)).
a(n) = floor(Product_{k=1..n} (1 + 1/prime(k))). (End)

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Aug 10 2024
Showing 1-7 of 7 results.