cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A000396 Perfect numbers k: k is equal to the sum of the proper divisors of k.

Original entry on oeis.org

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (this sequence), or deficient if sigma(k) < 2k (cf. A005100), where sigma(k) is the sum of the divisors of k (A000203).
The numbers 2^(p-1)*(2^p - 1) are perfect, where p is a prime such that 2^p - 1 is also prime (for the list of p's see A000043). There are no other even perfect numbers and it is believed that there are no odd perfect numbers.
Numbers k such that Sum_{d|k} 1/d = 2. - Benoit Cloitre, Apr 07 2002
For number of divisors of a(n) see A061645(n). Number of digits in a(n) is A061193(n). - Lekraj Beedassy, Jun 04 2004
All terms other than the first have digital root 1 (since 4^2 == 4 (mod 6), we have, by induction, 4^k == 4 (mod 6), or 2*2^(2*k) = 8 == 2 (mod 6), implying that Mersenne primes M = 2^p - 1, for odd p, are of the form 6*t+1). Thus perfect numbers N, being M-th triangular, have the form (6*t+1)*(3*t+1), whence the property N mod 9 = 1 for all N after the first. - Lekraj Beedassy, Aug 21 2004
The earliest recorded mention of this sequence is in Euclid's Elements, IX 36, about 300 BC. - Artur Jasinski, Jan 25 2006
Theorem (Euclid, Euler). An even number m is a perfect number if and only if m = 2^(k-1)*(2^k-1), where 2^k-1 is prime. Euler's idea came from Euclid's Proposition 36 of Book IX (see Weil). It follows that every even perfect number is also a triangular number. - Mohammad K. Azarian, Apr 16 2008
Triangular numbers (also generalized hexagonal numbers) A000217 whose indices are Mersenne primes A000668, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008, Sep 15 2013
If a(n) is even, then 2*a(n) is in A181595. - Vladimir Shevelev, Nov 07 2010
Except for a(1) = 6, all even terms are of the form 30*k - 2 or 45*k + 1. - Arkadiusz Wesolowski, Mar 11 2012
a(4) = A229381(1) = 8128 is the "Simpsons's perfect number". - Jonathan Sondow, Jan 02 2015
Theorem (Farideh Firoozbakht): If m is an integer and both p and p^k-m-1 are prime numbers then x = p^(k-1)*(p^k-m-1) is a solution to the equation sigma(x) = (p*x+m)/(p-1). For example, if we take m=0 and p=2 we get Euclid's result about perfect numbers. - Farideh Firoozbakht, Mar 01 2015
The cototient of the even perfect numbers is a square; in particular, if 2^p - 1 is a Mersenne prime, cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2 (see A152921). So, this sequence is a subsequence of A063752. - Bernard Schott, Jan 11 2019
Euler's (1747) proof that all the even perfect number are of the form 2^(p-1)*(2^p-1) implies that their asymptotic density is 0. Kanold (1954) proved that the asymptotic density of odd perfect numbers is 0. - Amiram Eldar, Feb 13 2021
If k is perfect and semiprime, then k = 6. - Alexandra Hercilia Pereira Silva, Aug 30 2021
This sequence lists the fixed points of A001065. - Alois P. Heinz, Mar 10 2024

Examples

			6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
  • Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
  • Euclid, Elements, Book IX, Section 36, about 300 BC.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
  • T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
  • Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
  • József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
  • Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.

Crossrefs

See A000043 for the current state of knowledge about Mersenne primes.
Cf. A228058 for Euler's criterion for odd terms.
Positions of 0's in A033879 and in A033880.
Cf. A001065.

Programs

  • Haskell
    a000396 n = a000396_list !! (n-1)
    a000396_list = [x | x <- [1..], a000203 x == 2 * x]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *)
    PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
  • PARI
    isA000396(n) = (sigma(n) == 2*n);
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return n > 0 and divisor_sigma(n) == 2*n
    print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

The perfect number N = 2^(p-1)*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N) = N^p), since tau(N) = 2*p. - Lekraj Beedassy, Sep 21 2004
a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 28 2008
a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 23 2008
a(n) = A000217(A000668(n)), assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = Sum of the first A000668(n) positive integers, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n) = A000384(A061652(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 17 2008
a(n) = A006516(A000043(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 30 2008
From Reikku Kulon, Oct 14 2008: (Start)
A144912(2, a(n)) = 1;
A144912(4, a(n)) = -1 for n > 1;
A144912(8, a(n)) = 5 or -5 for all n except 2;
A144912(16, a(n)) = -4 or -13 for n > 1. (End)
a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 09 2009
a(n) = A007691(A153800(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 14 2009
Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - Lekraj Beedassy, May 02 2009
a(n) = A060286(A016027(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Dec 13 2012
For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - Derek Orr, Sep 28 2013
a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - Daniel Poveda Parrilla, Aug 16 2016
a(n) = A156552(A324201(n)), assuming there are no odd perfect numbers. - Antti Karttunen, Mar 28 2019
a(n) = ((2^(A000043(n)))^3 - (2^(A000043(n)) - 1)^3 - 1)/6, assuming there are no odd perfect numbers. - Jules Beauchamp, Jun 06 2025

Extensions

I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. - N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by Harvey P. Dale, Jan 13 2025

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A019278 Numbers j such that sigma(sigma(j)) = k*j for some k.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 21, 24, 42, 60, 64, 84, 160, 168, 240, 336, 480, 504, 512, 960, 1023, 1344, 1536, 4092, 4096, 10752, 13824, 16368, 29127, 32256, 32736, 47360, 57120, 58254, 61440, 65472, 65536, 86016, 116508, 217728, 262144, 331520, 343976, 466032, 550095
Offset: 1

Views

Author

Keywords

Comments

Let sigma^m (j) be the result of applying the sum-of-divisors function (A000203) m times to j; call j (m,k)-perfect if sigma^m (j) = k*j; then this is the sequence of (2,k)-perfect numbers.
From Michel Marcus, May 14 2016: (Start)
For these numbers, the quotient k = sigma(sigma(j))/j is an integer (see A098223). Then also k = (sigma(s)/s)*(sigma(j)/j) with s = sigma(j). That is, k = abundancy(s)*abundancy(j).
So looking at the abundancy of these terms may be interesting. Indeed we see that 459818240 and 51001180160 are actually 3-perfect numbers (A005820), and the reason they are here is that they are coprime to 3. So their sums of divisors are 4-perfect numbers (A027687), yielding q=12.
In a similar way, we can see that the 5-perfect numbers (A046060) that are coprime to 5 will be terms of this sequence with q=30. There are 20 such numbers, the smallest being 13188979363639752997731839211623940096. (End)
From Michel Marcus, May 15 2016: (Start)
It is also interesting to note that for a(2)=8, s=sigma(8)=15 is also a term. This happens to be the case for chains of several terms in a row:
8, 15, 24, 60, 168, 480 with k = 3,4,7,8,9,10;
512, 1023, 1536, 4092, 10752, 32736 with k = 3,4,7,8,9,10;
29127, 47360, 116508, 331520, 932064, 2983680 with k = 4,7,8,9,13,14;
1556480, 3932040, 14008320 with k = 9,13,14;
106151936, 251650560, 955367424 with k = 9,13,14;
312792480, 1505806848 with k = 19,20;
6604416000, 30834059256 with k = 19,20;
9623577600, 46566269568 with k = 19,20.
When j is a term, we can test if s=sigma(j) is also a term; this way we get 6 more terms: 572941926400, 845734196736, 1422976331052, 4010593484800, 11383810648416, 36095341363200.
And the corresponding chains are:
173238912000, 845734196736 with k = 19,20;
355744082763, 572941926400, 1422976331052, 4010593484800, 11383810648416, 36095341363200 with k = 4,7,8,9,13,14. (End)
From Altug Alkan, May 17 2016: (Start)
Here are additional chains for the above list:
57120, 217728 with k = 13,14;
343976, 710400 with k = 7,8;
1980342, 5621760 with k = 10,14;
4404480, 14913024 with k = 11,12;
238608384, 775898880 with k = 11,12. (End)
Currently, the coefficient pairs are [1, 1], [3, 4], [4, 7], [7, 8], [8, 9], [9, 10], [9, 13], [10, 14], [11, 12], [13, 14], [16, 17], [16, 21], [17, 18], [19, 20], [23, 24], [25, 26], [25, 31], [27, 28], [29, 30], [31, 32], [32, 33], [37, 38]. It is interesting to note that for some of them, the pair (s,t) also satisfies t=sigma(s). - Michel Marcus, Jul 03 2016; Sep 06 2016
Using these empirical pairs of coefficients in conjunction with the first comment allows us to determine whether some term is the sum of divisors of another yet unknown smaller term. - Michel Marcus, Jul 04 2016
For m in A090748 = A000043 - 1 and c in A205597 (= odd a(n)), c*2^m is in the sequence, unless 2^(m+1)-1 | sigma(c). Indeed, from sigma(x*y) = sigma(x)*sigma(y) for gcd(x,y) = 1, we get sigma(sigma(c*2^m)) = sigma(sigma(c))*2^(m+1), so c*2^m is in the sequence if sigma(sigma(c))/c = k/2 (where k can't be odd: A330598 has no odd c). - M. F. Hasler, Jan 06 2020

Crossrefs

For sigma see A000203 and A007691.
Cf. A205597 (odd terms), A323653 (those terms that are in A007691, i.e., for which sigma(n)/n is also an integer), A330598 (half-integer ratio).

Programs

  • Magma
    [m: m in [1..560000]| IsIntegral(DivisorSigma(1,DivisorSigma(1,m))/m)]; // Marius A. Burtea, Nov 16 2019
  • Mathematica
    Select[Range[100000], Mod[DivisorSigma[1, DivisorSigma[1, #]], #] == 0 &] (* Carl Najafi, Aug 22 2011 *)
  • PARI
    is_A019278(n)=sigma(sigma(n))%n==0 \\ M. F. Hasler, Jul 02 2016
    
  • Python
    from sympy.ntheory import divisor_sigma as D
    print([i for i in range(1, 10000) if D(D(i, 1), 1)%i==0]) # Indranil Ghosh, Mar 17 2017
    

Extensions

Simpler definition from M. F. Hasler, Jul 02 2016

A336702 Numbers whose abundancy index is a power of 2.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, Aug 05 2020

Keywords

Comments

Apart from missing 2, this sequence gives all numbers k such that the binary expansion of A156552(k) is a prefix of that of A156552(sigma(k)), that is, for k > 1, numbers k for which sigma(k) is a descendant of k in A005940-tree. This follows because of the two transitions x -> A005843(x) (doubling) and x -> A003961(x) (prime shift) used to generate descendants in A005940-tree, using A003961 at any step of the process will ruin the chances of encountering sigma(k) anywhere further down that subtree.
Proof: Any left child in A005940 (i.e., A003961(k) for k) is larger than sigma(k), for any k > 2 [see A286385 for a proof], and A003961(n) > n for all n > 1. Thus, apart from A003961(2) = 3 = sigma(2), A003961^t(k) > sigma(k), where A003961^t means t-fold application of prime shift, here with t >= 1. On the other hand, sigma(2n) > sigma(n) for all n, thus taking first some doubling steps before a run of one or more prime shift steps will not rescue us, as neither will taking further doubling steps after a bout of prime shifts.
The first terms of A325637 not included in this sequence are 154345556085770649600 and 9186050031556349952000, as they have abundancy index 6.
From Antti Karttunen, Nov 29 2021: (Start)
Odd terms of this sequence are given by the intersection of A349169 and A349174.
A064989 applied to the odd terms of this sequence gives the fixed points of A326042, i.e., the positions of zeros in A348736, and a subset of the positions of ones in A348941.
Odd terms of this sequence form a subsequence of A348943, but should occur neither in A348748 nor in A348749.
(End)

Examples

			For 30240, sigma(30240) = 120960 = 4*30240, therefore, as sigma(k)/k = 2^2, a power of two, 30240 is present.
		

Crossrefs

Cf. A000396, A027687 (subsequences).
Subsequence of A007691, and after 1, also subsequence of A325637.
Union with {2} gives the positions of zeros in A347381.

Programs

  • PARI
    isA336702(n) = { my(r=sigma(n)/n); (1==denominator(r)&&!bitand(r, r-1)); }; \\ (Corrected) - Antti Karttunen, Aug 31 2021

A046060 5-multiperfect numbers.

Original entry on oeis.org

14182439040, 31998395520, 518666803200, 13661860101120, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1245087725796543283200, 1802582780370364661760
Offset: 1

Views

Author

Keywords

Comments

Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. [Georgi Guninski, Jul 25 2012]

Examples

			From _Daniel Forgues_, May 09 2010: (Start)
14182439040 = 2^7*3^4*5*7*11^2*17*19
sigma(14182439040)
  = (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18
  = (255)*(121)*(6)*(8)*(133)*(18)*(20)
  = (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5)
  = 2^7*3^4*5^2*7*11^2*17*19
  = (5) * (2^7*3^4*5*7*11^2*17*19)
  = 5 * 14182439040 (End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143.

Crossrefs

Programs

A347381 Distance from n to the nearest common ancestor of n and sigma(n) in the Doudna-tree (A005940).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 3, 2, 2, 3, 3, 2, 2, 3, 1, 3, 6, 3, 5, 1, 4, 5, 7, 2, 3, 4, 3, 0, 8, 4, 10, 4, 4, 7, 2, 4, 4, 7, 3, 4, 10, 4, 9, 4, 3, 9, 13, 4, 4, 4, 7, 7, 15, 4, 5, 5, 6, 9, 15, 4, 7, 10, 3, 5, 4, 6, 12, 6, 8, 5, 19, 5, 9, 6, 4, 8, 3, 5, 19, 4, 3, 11, 20, 4, 7, 11, 9, 6, 22, 4, 4, 8, 11, 15, 7, 5, 24, 5, 3, 5, 20
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

a(n) tells about the degree of relatedness between n and sigma(n) in Doudna tree (see the illustration in A005940). It is 0 for those n where sigma(n) is one of the descendants of n, 1 for those n where the nearest common ancestor of n and sigma(n) is the parent of n, 2 for those n where the nearest common ancestor of n and sigma(n) is the grandparent of n, and so on.

Crossrefs

Indices of 0 .. 5 in this sequence are given by {2} U A336702, A347391, A347392, A347393, A347394, A374465.
Cf. A000203, A027687, A156552, A252463, A252464, A332221, A347380, A347383, A347384, A347390, A374481 [a(prime(n))], A374482 (indices of records), A374483 (record values).
Cf. also A336834.

Programs

  • PARI
    A000523(n) = logint(n,2);
    Abincompreflen(x, y) = if(!x || !y, 0, my(xl=A000523(x), yl=A000523(y), s=min(xl,yl), k=0); x >>= (xl-s); y >>= (yl-s); while(s>=0 && !bitand(1,bitxor(x>>s,y>>s)), s--; k++); (k));
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = if(1==n,0,(bigomega(n) + A061395(n) - 1));
    A347381(n) = (A252464(n)-Abincompreflen(A156552(n), A156552(sigma(n))));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A347381(n) = if(1==n,0, my(lista=List([]), i, k=n, stemvec, stemlen, sbr=sigma(n)); while(k>1, listput(lista,k); k = A252463(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,sbr))>0, return(stemlen-i)); sbr = A252463(sbr)));

Formula

a(n) = A252464(n) - A347380(n), where A347380(n) is the length of the common prefix in binary expansions of A156552(n) and A332221(n) = A156552(sigma(n)).

Extensions

Name changed, old name is now in formula section. - Antti Karttunen, Jul 09 2024

A007539 a(n) = first n-fold perfect (or n-multiperfect) number.

Original entry on oeis.org

1, 6, 120, 30240, 14182439040, 154345556085770649600, 141310897947438348259849402738485523264343544818565120000
Offset: 1

Views

Author

Keywords

Comments

On the Riemann Hypothesis, a(n) > exp(exp(n / e^gamma)) for n > 3. Unconditionally, a(n) > exp(exp(0.9976n / e^gamma)) for n > 3, where the constant is related to A004394(1000000). - Charles R Greathouse IV, Sep 06 2012
Each of the terms 1, 6, 120, 30240 divides all larger terms <= a(8). See A227765, A227766, ..., A227769. - Jonathan Sondow, Jul 30 2013
Is a(n) < a(n+1)? - Jeppe Stig Nielsen, Jun 16 2015
Equivalently, a(n) is the smallest number k such that sigma(k)/k = n. - Derek Orr, Jun 19 2015
The number of divisors of these terms are: 1, 4, 16, 96, 1920, 110592, 1751777280, 63121588161085440. - Michel Marcus, Jun 20 2015
Given n, let S_n be the sequence of integers k that satisfy numerator(sigma(k)/k) = n. Then a(n) is a member of S_n. In fact a(n) = S_n(i), where the successive values of i are 1, 1, 2, 2, 4, 2, (23, 6, 31, 12, ...), where the terms in parentheses need to be confirmed. - Michel Marcus, Nov 22 2015
The first four terms are the only multiperfect numbers in A025487 among the 1600 initial terms of A007691. Can it be proved that these are the only ones among the whole A007691? See also A349747. - Antti Karttunen, Dec 04 2021

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 138.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[DivisorSigma[1, k]/k != n, k++]; k, {n, 4}] (* Michael De Vlieger, Jun 20 2015 *)
  • PARI
    a(n)=k=1;while((sigma(k)/k)!=n,k++);k
    vector(4,n,a(n)) \\ Derek Orr, Jun 19 2015

Extensions

More terms sent by Robert G. Wilson v, Nov 30 2000

A046061 6-multiperfect numbers.

Original entry on oeis.org

154345556085770649600, 9186050031556349952000, 680489641226538823680000, 6205958672455589512937472000, 13297004660164711617331200000, 15229814702070563916152832000
Offset: 1

Views

Author

Keywords

Comments

Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. - Georgi Guninski, Jul 25 2012

Examples

			From _Daniel Forgues_, May 09 2010: (Start)
154345556085770649600 = 2^15*3^5*5^2*7^2*11*13*17*19*31*43*257
sigma(154345556085770649600) =
(2^16-1)/1*(3^6-1)/2*(5^3-1)/4*(7^3-1)/6*(11^2-1)/10*(13^2-1)/12*(17^2-1)/16*(19^2-1)/18*(31^2-1)/30*(43^2-1)/42*(257^2-1)/256
= 65535*364*31*57*12*14*18*20*32*44*258
= (5*3*17*257)*(2^2*7*13)*(31)*(3*19)*(2^2*3)*(2*7)*(2*3^2)*(2^2*5)*(2^5)*(2^2*11)*(2*3*43)
= 2^16*3^6*5^2*7^2*11*13*17*19*31*43*257
= (2*3) * (2^15*3^5*5^2*7^2*11*13*17*19*31*43*257)
= 6 * 154345556085770649600 (End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.

Crossrefs

Programs

A347391 Numbers k such that sigma(k) is either their sibling in Doudna tree (A005940), or one of the sibling's descendants.

Original entry on oeis.org

3, 4, 5, 15, 20, 189, 945, 2125, 6375, 9261, 46305, 401625, 19679625
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

Numbers k > 1 such that nearest common ancestor of k and sigma(k) in Doudna tree is the parent of k, and sigma(k) is not a descendant of k.
Any hypothetical odd term x in A005820 (triperfect numbers) would also be a member of this sequence. This is illustrated in the following diagram which shows how the neighborhood of such x would look like in the Doudna tree (A005940). If m (the parent of x, x = A003961(m), m = A064989(x)) is even, then x is a multiple of 3, while if m is odd, then 3 does not divide x. Because the abundancy index decreases when traversing leftwards in the Doudna tree, m must be a term of A068403. Both x and m would also need to be squares, by necessity.
.
<--A003961-- m ---(*2)--->
.............../ \...............
/ \
/ \
x 2m
/ \ / \
etc.../ \.....2x sigma(x) = 3x..../ \.....4m
/ \ / \ / \
etc. etc. etc. \ / etc.
\ /
6x 9x = sigma(2x)
/ \ / \
etc. \ etc. etc.
\
12x = sigma(3x) if m odd.
.
From the diagram we also see that 2x would then need to be a term of A347392 (as well as that of A159907 and also in A074388, thus sqrt(x) should be a term of A097023), and furthermore, if x is not a multiple of 3 (i.e., when m is odd), then sigma(3*x) = 4*sigma(x) = 4*(3*x), thus 3*x = sigma(x) would be a term of A336702 (particularly, in A027687) and x would be a term of A323653.
Moreover, any odd square x in this sequence (for which sigma(x) would also be odd), would have an abundancy index of at least three (sigma(x)/x >= 3). See comments in A347383.
Note how 401625 = 6375 * 63 = 945 * 425, 46305 = 945 * 49, 9261 = 189 * 49, 6375 = 2125 * 3, 945 = 189 * 5 = 15 * 63 and 9261*2125 = 19679625. It seems that when the multiplicands are coprime, then they are both terms of this sequence, e.g. 2125 and 3, 189 and 5, 2125 and 9261.
From Antti Karttunen, Jul 10 2024: (Start)
Regarding the observation above, for two coprime odd numbers x, y, if both are included here because sigma(x) = 2^a * A064989(x) and sigma(y) = 2^b * A064989(y), then also their product x*y is included because in that case sigma(x*y) = 2^(a+b) * A064989(x*y).
Also, for two coprime odd numbers x, y, if both are included here because sigma(x) = A065119(i) * x and sigma(y) = A065119(j) * y, then also their product x*y is included because sigma(x*y) = A065119(k) * x*y, where A065119(k) = A065119(i)*A065119(j). The existence of such numbers (that would include odd triperfect and odd 6-perfect numbers, see A046061) is so far hypothetical, none is known.
It is not possible that the odd x is in this sequence if sigma(x) = k*A003961^e(x) and e = A061395(k)-2 >= 1.
Note that all odd terms < 2^33 here are some of the exponentially odd divisors of 19679625 (see A374199, also A374463 and A374464).
(End)
Question: from a(6) = 189 onward, are the rest of terms all in A347390?
Conjecture: sequence is finite.
If it exists, a(14) > 2^33.

Examples

			Sigma(3) = 4 is located as the sibling of 3 in the Doudna-tree (see the illustration in A005940), thus 3 is included in this sequence.
Sigma(4) = 7 is located as a grandchild of 3 (which is the sibling of 4) in the Doudna-tree, thus 4 is included in this sequence.
Sigma(5) = 6 is located as the sibling of 5 in the Doudna-tree, thus 5 is included in this sequence.
189 (= 3^3 * 7) is a term, as sigma(189) = 320, and 320 occurs as a descendant of 80 (which is the right sibling of 189) in the Doudna tree, as illustrated below:
.
             40
            /  \
   A003961 /    \ *2
          /      \
        189       80
        / \      / \
     etc   etc etc  160
                   / \
                 etc  320
                     / \
                   etc. etc.
.
945 (= 3^3 * 5 * 7) is a term, as sigma(945) = 1920, and 1920 occurs as a descendant of 240, which is the right sibling of 945 in the Doudna tree, as illustrated below:
            120
            /  \
   A003961 /    \ *2
          /      \
        945       240
        / \      / \
     etc   etc  etc  480
                   / \
                 etc  960
                     / \
                   etc. 1920
                        / \
                     etc. etc.
		

Crossrefs

Programs

  • PARI
    isA347391(n) = (1==A347381(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    isA347391(n) = if(1==n,0,my(m=A252463(n), s=sigma(n)); while(s>m, if(s==n, return(0)); s = A252463(s)); (s==m));
Showing 1-10 of 43 results. Next