A328637
Change the array in A125624 by putting a 1 at the top of the first column and pushing that column down by one place; a(n) is the sum of the terms in the modified array down to and including n, in the column that contains n.
Original entry on oeis.org
1, 3, 6, 4, 11, 10, 18, 8, 17, 20, 29, 12, 42, 34, 32, 28, 59, 18, 78, 48, 53, 56, 101, 24, 43, 82, 27, 76, 130, 54, 161, 75, 86, 116, 110, 36, 198, 154, 125, 67, 239, 96, 282, 120, 81, 200, 329, 48, 116, 98, 176, 172, 382, 54, 165, 137, 233, 258, 441
Offset: 1
The modified version of the array A125624 is:
1, 4, 8, 16, 32, 64, 128, 256, 512, ...
2, 6, 9, 12, 18, 24, 27, 36, 48, ...
3, 10, 15, 20, 25, 30, 40, 45, 50, ...
5, 14, 21, 28, 35, 42, 49, 56, 63, ...
7, 22, 33, 44, 55, 66, 77, 88, 99, ...
11, 26, 39, 52, 65, 78, 91, 104, 117, ...
...
Then:
a(1) = 1,
a(2) = 1+2,
a(3) = 1+2+3,
a(4) = 4,
a(5) = 1+2+3+5,
a(6) = 4+6,
...
A083140
Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).
Original entry on oeis.org
2, 3, 4, 5, 9, 6, 7, 25, 15, 8, 11, 49, 35, 21, 10, 13, 121, 77, 55, 27, 12, 17, 169, 143, 91, 65, 33, 14, 19, 289, 221, 187, 119, 85, 39, 16, 23, 361, 323, 247, 209, 133, 95, 45, 18, 29, 529, 437, 391, 299, 253, 161, 115, 51, 20, 31, 841, 667, 551, 493, 377, 319, 203, 125, 57, 22
Offset: 2
Array begins:
2 4 6 8 10 12 14 16 18 20 22 24 .... (A005843 \ {0})
3 9 15 21 27 33 39 45 51 57 63 69 .... (A016945)
5 25 35 55 65 85 95 115 125 145 155 175 .... (A084967)
7 49 77 91 119 133 161 203 217 259 287 301 .... (A084968)
11 121 143 187 209 253 319 341 407 451 473 517 .... (A084969)
13 169 221 247 299 377 403 481 533 559 611 689 .... (A084970)
Arrays of integers grouped into rows by various criteria:
by lowest prime factor: this sequence (upward antidiagonals),
A083221 (downward antidiagonals),
by number of distinct prime factors:
A125666,
by number of prime factors counted with multiplicity:
A078840,
by ordered prime signature:
A096153,
by number of 1's in binary expansion:
A066884 (upward),
A067576 (downward),
by distance to next prime:
A192179.
-
a = Join[ {Table[2n, {n, 1, 12}]}, Table[ Take[ Prime[n]*Select[ Range[100], GCD[ Prime[n] #, Product[ Prime[i], {i, 1, n - 1}]] == 1 &], 12], {n, 2, 12}]]; Flatten[ Table[ a[[i, n - i]], {n, 2, 12}, {i, n - 1, 1, -1}]]
(* second program: *)
rows = 12; Clear[T]; Do[For[m = p = Prime[n]; k = 1, k <= rows, m += p, If[ FactorInteger[m][[1, 1]] == p, T[n, k++] = m]], {n, rows}]; Table[T[n - k + 1, k], {n, rows}, {k, n}] // Flatten (* Jean-François Alcover, Mar 08 2016 *)
A289662
a(n) is the smallest m such that p = n-th popular prime = A385503(n) is uniquely popular on the interval [2,m] or -1 if p is never uniquely popular.
Original entry on oeis.org
2, 12, 80, 196, 1638, 4864, 22425, 46500, 109779, 158625, 603564, 2552416, 2620142, 2627250, 41163747, 237398795, 1966466950, 13690729828, 64322158656, 79838739611, 220355987735, 232268774850, 618745972214, 1882062476406, 9607713772982, 19364051829855, 26393150937218, 37636607806688, 114514665167797, 173974642809066, 228013323978930, 259772858868378, 284600479573629, 644741545246282
Offset: 1
Edited, and terms updated from revised version of McNew, by
Peter Munn, Jul 04 2025
A298268
a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 7, 6, 15, 25, 11, 21, 13, 49, 35, 8, 17, 27, 19, 55, 77, 121, 23, 33, 65, 169, 39, 91, 29, 85, 31, 10, 143, 289, 119, 45, 37, 361, 221, 95, 41, 133, 43, 187, 115, 529, 47, 51, 161, 125, 323, 247, 53, 57, 209, 203, 437, 841, 59, 145, 61, 961
Offset: 1
The first terms, alongside A006530(n), are:
n a(n) gpf(n)
-- ---- ------
1 1 1
2 2 2
3 3 3
4 4 2
5 5 5
6 9 3
7 7 7
8 6 2
9 15 3
10 25 5
11 11 11
12 21 3
13 13 13
14 49 7
15 35 5
16 8 2
17 17 17
18 27 3
19 19 19
20 55 5
Cf.
A006530,
A008364,
A046022,
A051038,
A061395,
A078899,
A083140,
A125624,
A151800,
A176506,
A298268,
A298882 (inverse).
A207802
Permutation of positive numbers. See comments.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 6, 16, 7, 32, 9, 64, 10, 128, 12, 256, 11, 512, 18, 1024, 15, 2048, 24, 4096, 14, 8192, 27, 16384, 20, 32768, 36, 65536, 13, 131072, 48, 262144, 25, 524288, 54, 1048576, 21, 2097152, 72, 4194304, 30, 8388608, 81, 16777216, 22, 33554432, 96, 67108864, 40, 134217728, 108
Offset: 1
A298882
a(1) = 1, and for any n > 1, if n is the k-th number with least prime factor p, then a(n) is the k-th number with greatest prime factor p.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 7, 16, 6, 32, 11, 64, 13, 128, 9, 256, 17, 512, 19, 1024, 12, 2048, 23, 4096, 10, 8192, 18, 16384, 29, 32768, 31, 65536, 24, 131072, 15, 262144, 37, 524288, 27, 1048576, 41, 2097152, 43, 4194304, 36, 8388608, 47, 16777216, 14, 33554432, 48
Offset: 1
The first terms, alongside A020639(n), are:
n a(n) lpf(n)
-- ---- ------
1 1 1
2 2 2
3 3 3
4 4 2
5 5 5
6 8 2
7 7 7
8 16 2
9 6 3
10 32 2
11 11 11
12 64 2
13 13 13
14 128 2
15 9 3
16 256 2
17 17 17
18 512 2
19 19 19
20 1024 2
A328638
a(n) is the sum of m such that 2 <= m <= n and gpf(m) = gpf(n), where gpf(i) is the greatest prime factor of i (A006530), with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 6, 5, 9, 7, 14, 18, 15, 11, 30, 13, 21, 30, 30, 17, 48, 19, 50, 42, 33, 23, 72, 75, 39, 99, 70, 29, 105, 31, 62, 66, 51, 105, 135, 37, 57, 78, 145, 41, 147, 43, 110, 190, 69, 47, 183, 196, 240, 102, 130, 53, 237, 165, 252, 114, 87, 59, 300
Offset: 1
5, 10, 15 and 20 have same gpf as 20, so a(20) = 5 + 10 + 15 + 20 = 50.
-
gpf(n)={my(f=factor(n)[,1]); f[#f]}
a(n)={if(n<=1, n==1, my(t=gpf(n)); sum(i=2, n, if(gpf(i)==t, i, 0)))} \\ Andrew Howroyd, Oct 28 2019
Showing 1-7 of 7 results.
Comments