A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).
90, 180, 210, 270, 360, 420, 450, 462, 525, 540, 550, 630, 720, 810, 840, 858, 900, 910, 924, 990, 1050, 1080, 1100, 1155, 1170, 1260, 1326, 1350, 1386, 1440, 1470, 1530, 1575, 1620, 1650, 1666, 1680, 1710, 1716, 1800, 1820, 1848, 1870, 1890, 1911, 1938, 1980
Offset: 1
Keywords
Examples
The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence. The terms together with their prime indices begin: 90: {1,2,2,3} 180: {1,1,2,2,3} 210: {1,2,3,4} 270: {1,2,2,2,3} 360: {1,1,1,2,2,3} 420: {1,1,2,3,4} 450: {1,2,2,3,3} 462: {1,2,4,5} 525: {2,3,3,4} 540: {1,1,2,2,2,3} 550: {1,3,3,5} 630: {1,2,2,3,4} 720: {1,1,1,1,2,2,3}
Crossrefs
Programs
-
Maple
N:= 10^4: # for terms <= N P:= select(isprime, [$1..N]): nP:= nops(P): R:= {}: for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do for k from j do l:= j+k-i; if l <= k or l > nP then break fi; v:= P[i]*P[j]*P[k]*P[l]; if v <= N then R:= R union {seq(t,t=v..N,v)}; fi od od od: sort(convert(R,list)); # Robert Israel, Nov 06 2023
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]
Comments