cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A366739 Number of distinct semi-sums of the multiset of prime indices of n. Number of distinct sums of prime indices of semiprime divisors of n (counted by A086971).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 04 2023

Keywords

Comments

First differs from A086971 at a(90) = 3, A086971(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The prime indices of 90 are {1,2,2,3}, with semi-sums
  3 = 1+2
  4 = 1+3 (or 2+2)
  5 = 2+3
so a(90) = 3.
Alternatively, the semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5) so a(90) = 3.
		

Crossrefs

The non-binary version is A299701.
Summing over partitions gives A366738, strict A366741.
For all sums of pairs of elements we have A367095.
Positions of first appearances are A367097.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299702 ranks knapsack partitions, counted by A108917.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,100}]
  • PARI
    A366739(n) = #Set(apply(d->((f)->sum(i=1,#f~,f[i,2]*primepi(f[i,1])))(factor(d)), select(d->2==bigomega(d), divisors(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) <= A086971(n). - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A002808 The composite numbers: numbers n of the form x*y for x > 1 and y > 1.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Comments

The natural numbers 1,2,... are divided into three sets: 1 (the unit), the primes (A000040) and the composite numbers (A002808).
The number of composite numbers <= n (A065855) = n - pi(n) (A000720) - 1.
n is composite iff sigma(n) + phi(n) > 2n. This is a nice result of the well known theorem: For all positive integers n, n = Sum_{d|n} phi(d). For the proof see my contribution to puzzle 76 of Carlos Rivera's Primepuzzles. - Farideh Firoozbakht, Jan 27 2005, Jan 18 2015
The composite numbers have the semiprimes A001358 as primitive elements.
A211110(a(n)) > 1. - Reinhard Zumkeller, Apr 02 2012
A060448(a(n)) > 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) > 0. - Reinhard Zumkeller, Dec 14 2012
Composite numbers n which are the product of r=A001222(n) prime numbers are sometimes called r-almost primes. Sequences listing r-almost primes are: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
a(n) = A056608(n) * A160180(n). - Reinhard Zumkeller, Mar 29 2014
Degrees for which there are irreducible polynomials which are reducible mod p for all primes p, see Brandl. - Charles R Greathouse IV, Sep 04 2014
An integer is composite if and only if it is the sum of strictly positive integers in arithmetic progression with common difference 2: 4 = 1 + 3, 6 = 2 + 4, 8 = 3 + 5, 9 = 1 + 3 + 5, etc. - Jean-Christophe Hervé, Oct 02 2014
This statement holds since k+(k+2)+...+k+2(n-1) = n*(n+k-1) = a*b with arbitrary a,b (taking n=a and k=b-a+1 if b>=a). - M. F. Hasler, Oct 04 2014
For n > 4, these are numbers n such that n!/n^2 = (n-1)!/n is an integer (see A056653). - Derek Orr, Apr 16 2015
Let f(x) = Sum_{i=1..x} Sum_{j=2..i-1} cos((2*Pi*x*j)/i). It is known that the zeros of f(x) are the prime numbers. So these are the numbers n such that f(n) > 0. - Michel Lagneau, Oct 13 2015
Numbers n that can be written as solutions of the Diophantine equation n = (x+2)(y+2) where {x,y} in N^2, pairs of natural numbers including zero (cf. Mathematica code and Davis). - Ron R Spencer and Bradley Klee, Aug 15 2016
Numbers n with a partition (containing at least two summands) so that its summands also multiply to n. If n is prime, there is no way to find those two (or more) summands. If n is composite, simply take a factor or several, write those divisors and fill with enough 1's so that they add up to n. For example: 4 = 2*2 = 2+2, 6 = 1*2*3 = 1+2+3, 8 = 1*1*2*4 = 1+1+2+4, 9 = 1*1*1*3*3 = 1+1+1+3+3. - Juhani Heino, Aug 02 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 127.
  • Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.
  • R. K. Guy, Unsolved Problems Number Theory, Section A.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 66.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 51.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A008578. - Omar E. Pol, Dec 16 2016
Cf. A073783 (first differences), A073445 (second differences).
Boustrophedon transforms: A230954, A230955.
Cf. A163870 (nontrivial divisors).
Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Haskell
    a002808 n = a002808_list !! (n-1)
    a002808_list = filter ((== 1) . a066247) [2..]
    -- Reinhard Zumkeller, Feb 04 2012
    
  • Magma
    [n: n in [2..250] | not IsPrime(n)]; // G. C. Greubel, Feb 24 2024
    
  • Maple
    t := []: for n from 2 to 20000 do if isprime(n) then else t := [op(t),n]; fi; od: t; remove(isprime,[$3..89]); # Zerinvary Lajos, Mar 19 2007
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do ; end if; end proc; # R. J. Mathar, Oct 27 2009
  • Mathematica
    Select[Range[2,100], !PrimeQ[#]&] (* Zak Seidov, Mar 05 2011 *)
    With[{nn=100},Complement[Range[nn],Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, May 01 2012 *)
    Select[Range[100], CompositeQ] (* Jean-François Alcover, Nov 07 2021 *)
  • PARI
    A002808(n)=for(k=0,primepi(n),isprime(n++)&&k--);n \\ For illustration only: see below. - M. F. Hasler, Oct 31 2008
    
  • PARI
    A002808(n)= my(k=-1); while(-n + n += -k + k=primepi(n),); n \\ For n=10^4 resp. 3*10^4, this is about 100 resp. 500 times faster than the former; M. F. Hasler, Nov 11 2009
    
  • PARI
    forcomposite(n=1, 1e2, print1(n, ", ")) \\ Felix Fröhlich, Aug 03 2014
    
  • PARI
    for(n=1, 1e3, if(bigomega(n) > 1, print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
    
  • Python
    from sympy import primepi
    def A002808(n):
        m, k = n, primepi(n) + 1 + n
        while m != k:
            m, k = k, primepi(k) + 1 + n
        return m # Chai Wah Wu, Jul 15 2015, updated Apr 14 2016
    
  • Python
    from sympy import isprime
    def ok(n): return n > 1 and not isprime(n)
    print([k for k in range(89) if ok(k)]) # Michael S. Branicky, Nov 07 2021
    
  • Python
    next_A002808=lambda n: next(n for n in range(n,n*5)if not isprime(n)) # next composite >= n > 0; next_A002808(n)==n <=> iscomposite(n). - M. F. Hasler, Mar 28 2025
    is_A002808=lambda n:not isprime(n) and n>1 # where isprime(n) can be replaced with: all(n%d for d in range(2, int(n**.5)+1))
    # generators of composite numbers:
    A002808_upto=lambda stop=1<<59: filter(is_A002808, range(2,stop))
    A002808_seq=lambda:(q:=2)and(n for p in primes if (o:=q)<(q:=p) for n in range(o+1,p)) # with, e.g.: primes=filter(isprime,range(2,1<<59)) # M. F. Hasler, Mar 28 2025
    
  • SageMath
    [n for n in (2..250) if not is_prime(n)] # G. C. Greubel, Feb 24 2024

Formula

a(n) = pi(a(n)) + 1 + n, where pi is the prime counting function.
a(n) = A136527(n, n).
A000005(a(n)) > 2. - Juri-Stepan Gerasimov, Oct 17 2009
A001222(a(n)) > 1. - Juri-Stepan Gerasimov, Oct 30 2009
A000203(a(n)) < A007955(a(n)). - Juri-Stepan Gerasimov, Mar 17 2011
A066247(a(n)) = 1. - Reinhard Zumkeller, Feb 05 2012
Sum_{n>=1} 1/a(n)^s = Zeta(s)-1-P(s), where P is prime zeta. - Enrique Pérez Herrero, Aug 08 2012
n + n/log n + n/log^2 n < a(n) < n + n/log n + 3n/log^2 n for n >= 4, see Panaitopol. Bojarincev gives an asymptotic version. - Charles R Greathouse IV, Oct 23 2012
a(n) > n + A000720(n) + 1. - François Huppé, Jan 08 2025

Extensions

Deleted an incomplete and broken link. - N. J. A. Sloane, Dec 16 2010

A008578 Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

1 together with the primes; also called the noncomposite numbers.
Also largest sequence of nonnegative integers with the property that the product of 2 or more elements with different indices is never a square. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001 [Comment corrected by Farideh Firoozbakht, Aug 03 2014]
Numbers k whose largest divisor <= sqrt(k) equals 1. (See also A161344, A161345, A161424.) - Omar E. Pol, Jul 05 2009
Numbers k such that d(k) <= 2. - Juri-Stepan Gerasimov, Oct 17 2009
Also first column of array in A163280. Also first row of array in A163990. - Omar E. Pol, Oct 24 2009
Possible values of A136548(m) in increasing order, where A136548(m) = the largest numbers h such that A000203(h) <= k (k = 1,2,3,...), where A000203(h) = sum of divisors of h. - Jaroslav Krizek, Mar 01 2010
Where record values of A022404 occur: A086332(n)=A022404(a(n)). - Reinhard Zumkeller, Jun 21 2010
Positive integers that have no divisors other than 1 and itself (the old definition of prime numbers). - Omar E. Pol, Aug 10 2012
Conjecture: the sequence contains exactly those k such that sigma(k) > k*BigOmega(k). - Irina Gerasimova, Jun 08 2013
Note on the Gerasimova conjecture: all terms in the sequence obviously satisfy the inequality, because sigma(p) = 1+p and BigOmega(p) = 1 for primes p, so 1+p > p*1. For composites, the (opposite) inequality is heuristically correct at least up to k <= 4400000. The general proof requires to show that BigOmega(k) is an upper limit of the abundancy sigma(k)/k for composite k. This proof is easy for semiprimes k=p1*p2 in general, where sigma(k)=1+p1+p2+p1*p2 and BigOmega(k)=2 and p1, p2 <= 2. - R. J. Mathar, Jun 12 2013
Numbers k such that phi(k) + sigma(k) = 2k. - Farideh Firoozbakht, Aug 03 2014
isA008578(n) <=> k is prime to n for all k in {1,2,...,n-1}. - Peter Luschny, Jun 05 2017
In 1751 Leonhard Euler wrote: "Having so established this sign S to indicate the sum of the divisors of the number in front of which it is placed, it is clear that, if p indicates a prime number, the value of Sp will be 1 + p, except for the case where p = 1, because then we have S1 = 1, and not S1 = 1 + 1. From this we see that we must exclude unity from the sequence of prime numbers, so that unity, being the start of whole numbers, it is neither prime nor composite." - Omar E. Pol, Oct 12 2021
a(1) = 1; for n >= 2, a(n) is the least unused number that is coprime to all previous terms. - Jianing Song, May 28 2022
A number p is preprime if p = a*b ==> a = 1 or b = 1. This sequence lists the preprimes in the commutative monoid IN \ {0}. - Peter Luschny, Aug 26 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 84 at pp. 214-217.
  • G. Chrystal, Algebra: An Elementary Textbook. Chelsea Publishing Company, 7th edition, (1964), chap. III.7, p. 38.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 11.
  • H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035
  • D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
  • D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
  • H. C. Williams and J. O. Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143

Crossrefs

The main entry for this sequence is A000040.
The complement of A002808.
Cf. A000732 (boustrophedon transform).
Cf. A023626 (self-convolution).

Programs

  • GAP
    A008578:=Concatenation([1],Filtered([1..10^5],IsPrime)); # Muniru A Asiru, Sep 07 2017
  • Haskell
    a008578 n = a008578_list !! (n-1)
    a008578_list = 1 : a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    [1] cat [n: n in PrimesUpTo(271)];  // Bruno Berselli, Mar 05 2011
    
  • Maple
    A008578 := n->if n=1 then 1 else ithprime(n-1); fi :
  • Mathematica
    Join[ {1}, Table[ Prime[n], {n, 1, 60} ] ]
    NestList[ NextPrime, 1, 57] (* Robert G. Wilson v, Jul 21 2015 *)
    oldPrimeQ[n_] := AllTrue[Range[n-1], CoprimeQ[#, n]&];
    Select[Range[271], oldPrimeQ] (* Jean-François Alcover, Jun 07 2017, after Peter Luschny *)
  • PARI
    is(n)=isprime(n)||n==1
    
  • Sage
    isA008578 = lambda n: all(gcd(k, n) == 1 for k in (1..n-1))
    print([n for n in (1..271) if isA008578(n)]) # Peter Luschny, Jun 07 2017
    

Formula

a(n) = A000040(n-1).
m is in the sequence iff sigma(m) + phi(m) = A065387(m) = 2m. - Farideh Firoozbakht, Jan 27 2005
a(n) = A158611(n+1) for n >= 1. - Jaroslav Krizek, Jun 19 2009
In the following formulas (based on emails from Jaroslav Krizek and R. J. Mathar), the star denotes a Dirichlet convolution between two sequences, and "This" is A008578.
This = A030014 * A008683. (Dirichlet convolution using offset 1 with A030014)
This = A030013 * A000012. (Dirichlet convolution using offset 1 with A030013)
This = A034773 * A007427. (Dirichlet convolution)
This = A034760 * A023900. (Dirichlet convolution)
This = A034762 * A046692. (Dirichlet convolution)
This * A000012 = A030014. (Dirichlet convolution using offset 1 with A030014)
This * A008683 = A030013. (Dirichlet convolution using offset 1 with A030013)
This * A000005 = A034773. (Dirichlet convolution)
This * A000010 = A034760. (Dirichlet convolution)
This * A000203 = A034762. (Dirichlet convolution)
A002033(a(n))=1. - Juri-Stepan Gerasimov, Sep 27 2009
a(n) = A181363((2*n-1)*2^k), k >= 0. - Reinhard Zumkeller, Oct 16 2010
a(n) = A001747(n)/2. - Omar E. Pol, Jan 30 2012
A060448(a(n)) = 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2012
Sum_{n>=1} x^a(n) = (Sum_{n>=1} (A002815(n)*x^n))*(1-x)^2. - L. Edson Jeffery, Nov 25 2013

A066247 Characteristic function of composite numbers: 1 if n is composite else 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Comments

a(n) = signum(A066246(n)), where signum = A057427. For n > 1: a(n) = 1 - A010051(n) = A005171(n).
a(n) = A057427(A086971(n)). - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Cf. A065855 (partial sums).

Programs

Formula

For n>1 a(n) = 1-floor(1/A001222(n)). - Enrique Pérez Herrero, Aug 08 2012
a(n) = A065855(n)-A065855(n-1) = 1-A000720(n)+A000720(n-1). - Chayim Lowen, Jul 23 2015
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = Zeta(s)-1-P(s), where P is prime zeta. - Enrique Pérez Herrero, Aug 08 2012
a(n) = 1 if A001222(n) > 1, 0 otherwise. - Antti Karttunen, Nov 20 2017

A065119 Numbers k such that the k-th cyclotomic polynomial is a trinomial.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, 192, 216, 243, 288, 324, 384, 432, 486, 576, 648, 729, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2187, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6561, 6912, 7776, 8748, 9216
Offset: 1

Views

Author

Len Smiley, Nov 12 2001

Keywords

Comments

Appears to be numbers of form 2^a * 3^b, a >= 0, b > 0. - Lekraj Beedassy, Sep 10 2004
This is true: see link "Cyclotomic trinomials". - Robert Israel, Jul 14 2015
3-smooth numbers (A003586) which are not powers of 2 (A000079). - Amiram Eldar, Nov 10 2020
These are the conjugates of semiprimes, where conjugation is A122111; or Heinz numbers of conjugates of length-2 partitions. - Gus Wiseman, Nov 09 2023
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 13 2024

Examples

			The 54th cyclotomic polynomial is x^18 - x^9 + 1 which is trinomial, so 54 is in the sequence.
From _Gus Wiseman_, Nov 09 2023: (Start)
The terms and conjugate semiprimes, showing their respective Heinz partitions, begin:
    3: (2)              4: (1,1)
    6: (2,1)            6: (2,1)
    9: (2,2)            9: (2,2)
   12: (2,1,1)         10: (3,1)
   18: (2,2,1)         15: (3,2)
   24: (2,1,1,1)       14: (4,1)
   27: (2,2,2)         25: (3,3)
   36: (2,2,1,1)       21: (4,2)
   48: (2,1,1,1,1)     22: (5,1)
   54: (2,2,2,1)       35: (4,3)
   72: (2,2,1,1,1)     33: (5,2)
   81: (2,2,2,2)       49: (4,4)
   96: (2,1,1,1,1,1)   26: (6,1)
(End)
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 733, pp. 74 and 310, Ellipses Paris, 2004.

Crossrefs

Differs at the 18th term from A063996.
For primes (A008578) we have conjugates A000079.
For triprimes (A014612) we have conjugates A080193.
A001358 lists semiprimes, squarefree A006881, complement A100959.

Programs

  • Maple
    with(numtheory): a := []; for m from 1 to 3000 do if nops([coeffs(cyclotomic(m,x))])=3 then a := [op(a),m] fi od; print(a);
  • Mathematica
    max = 5000; Sort[Flatten[Table[2^a 3^b, {a, 0, Floor[Log[2, max]]}, {b, Floor[Log[3, max/2^a]]}]]] (* Alonso del Arte, May 19 2016 *)
  • PARI
    isok(n)=my(vp = Vec(polcyclo(n))); sum(k=1, #vp, vp[k] != 0) == 3; \\ Michel Marcus, Jul 11 2015
    
  • PARI
    list(lim)=my(v=List(),N); for(n=1,logint(lim\1,3), N=3^n; while(N<=lim, listput(v,N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Aug 07 2015

Formula

A206787(a(n)) = 4. - Reinhard Zumkeller, Feb 12 2012
a(n) = A033845(n)/2 = 3 * A003586(n). - Robert Israel, Jul 14 2015
Sum_{n>=1} 1/a(n) = 1. - Amiram Eldar, Nov 10 2020

Extensions

Offset set to 1 and more terms from Michel Marcus, Jul 11 2015

A220264 Smallest integer with exactly n semiprime divisors.

Original entry on oeis.org

1, 4, 12, 30, 60, 180, 210, 420, 1260, 6300, 2310, 4620, 13860, 69300, 485100, 30030, 60060, 180180, 900900, 6306300, 69369300, 510510, 1021020, 3063060, 15315300, 107207100, 1179278100, 15330615300, 9699690, 19399380, 58198140, 290990700, 2036934900, 22406283900
Offset: 0

Views

Author

Robert G. Wilson v, Dec 09 2012

Keywords

Comments

At the Mar 31 2011 suggestion of Zak Seidov in A086971.
Often a(n+1) = k*a(n) for some integer k.
All terms are cubefree products of primorials (A025487 INTERSECT A004709). - Charles R Greathouse IV, Dec 11 2012
A086971(a(n)) = n and A086971(m) != n for m < a(n). - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Subsequence of A220423.

Programs

  • Haskell
    import Data.List (find); import Data.Maybe (fromJust)
    a220264 n = fromJust $ find ((== n) . a086971) a220423_list
    -- Reinhard Zumkeller, Sep 08 2015
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; t = Table[0, {50}]; k = 1; While[k < 10^7, a = f@ k; If[t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t
  • PARI
    prim(n)=my(v=primes(n));prod(i=1,#v,v[i])
    a(n)=if(n>1,my(L=(sqrtint(8*n+1)+1)\2);prim(L)*prim(n-binomial(L,2)),1+3*n) \\ Charles R Greathouse IV, Dec 11 2012
    

Extensions

a(25)-a(26) from Donovan Johnson, Dec 10 2012
a(27)-a(41) from Charles R Greathouse IV, Dec 11 2012

A101638 Number of distinct 4-almost primes A014613 which are factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 10 2004

Keywords

Comments

This is the inverse Moebius transform of A101637. If we take the prime factorization of n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=4}| + ((j-1)/2)*|{k: ek>=3}| + C(|{k: ek>=2}|,2) + C(j,4). The first term is the number of distinct 4th powers of primes in the factors of n (the first way of finding a 4-almost prime). The second term is the number of distinct cubes of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 4-almost prime). The third term is the number of distinct pairs of squares of primes in the factors of n (the third way of finding a 4-almost prime). The 4th term is the number of distinct products of 4 distinct primes, which is the number of combinations of j primes in the factors of n taken 4 at a time, A000332(j), (the 4th way of finding a 4-almost prime).

Examples

			a(96) = 2 because 96 = 16 * 6 hence divisible by the 4-almost prime 16 and also 96 = 24 * 4 hence divisible by the 4-almost prime 24.
		

References

  • Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • PARI
    a(n)=my(f=factor(n)[,2], v=apply(k->sum(i=1,#f,f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2],2) + v[2]*binomial(v[1]-1,2) + binomial(v[1],4) \\ Charles R Greathouse IV, Sep 14 2015

A366740 Positive integers whose semiprime divisors do not all have different Heinz weights (sum of prime indices, A056239).

Original entry on oeis.org

90, 180, 210, 270, 360, 420, 450, 462, 525, 540, 550, 630, 720, 810, 840, 858, 900, 910, 924, 990, 1050, 1080, 1100, 1155, 1170, 1260, 1326, 1350, 1386, 1440, 1470, 1530, 1575, 1620, 1650, 1666, 1680, 1710, 1716, 1800, 1820, 1848, 1870, 1890, 1911, 1938, 1980
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
From Robert Israel, Nov 06 2023: (Start)
Positive integers divisible by the product of four primes, prime(i)*prime(j)*prime(k)*prime(l), i < j <= k < l, with i + l = j + k.
All positive multiples of terms are terms. (End)

Examples

			The semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5), which are not all different, so 90 is in the sequence.
The terms together with their prime indices begin:
    90: {1,2,2,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   270: {1,2,2,2,3}
   360: {1,1,1,2,2,3}
   420: {1,1,2,3,4}
   450: {1,2,2,3,3}
   462: {1,2,4,5}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
   550: {1,3,3,5}
   630: {1,2,2,3,4}
   720: {1,1,1,1,2,2,3}
		

Crossrefs

The complement is too dense.
For all divisors instead of just semiprimes we have A299729, strict A316402.
Distinct semi-sums of prime indices are counted by A366739.
Partitions of this type are counted by A366753, non-binary A366754.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A299702 ranks knapsack partitions, counted by A108917, strict A275972.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Maple
    N:= 10^4: # for terms <= N
    P:= select(isprime, [$1..N]): nP:= nops(P):
    R:= {}:
    for i from 1 while P[i]*P[i+1]^2*P[i+2] < N do
      for j from i+1 while P[i]*P[j]^2 * P[j+1] < N do
        for k from j do
          l:= j+k-i;
          if l <= k or l > nP then break fi;
          v:= P[i]*P[j]*P[k]*P[l];
          if v <= N then
            R:= R union {seq(t,t=v..N,v)};
          fi
    od od od:
    sort(convert(R,list)); # Robert Israel, Nov 06 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!UnsameQ@@Total/@Union[Subsets[prix[#],{2}]]&]

Formula

These are numbers k such that A086971(k) > A366739(k).

A367095 Number of distinct sums of pairs (repeats allowed) of prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 6, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 5, 1, 3, 3, 1, 3, 6, 1, 3, 3, 6, 1, 3, 1, 3, 3, 3, 3, 6, 1, 3, 1, 3, 1, 6, 3, 3, 3, 3, 1, 5, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 6, 1, 3, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Is the image missing only 2 and 4?

Examples

			The prime indices of 15 are {2,3}, with sums of pairs:
  2+2 = 4
  2+3 = 5
  3+3 = 6
so a(15) = 3.
The prime indices of 180 are {1,1,2,2,3}, with sums of pairs:
  1+1 = 2
  1+2 = 3
  1+3 = 4
  2+2 = 4
  2+3 = 5
  3+3 = 6
so a(180) = 5.
		

Crossrefs

Depends only on squarefree kernel A007947. (Even more exactly, on A322591 - Antti Karttunen, Jan 20 2025)
Positions of first appearances appear to be a subset of A325986.
For 2-element submultisets we have A366739, for all submultisets A299701.
A001222 counts prime factors (also indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A304793 counts positive subset-sums of prime indices.
A367096 lists semiprime divisors, count A086971.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Tuples[prix[n],2]]],{n,100}]
  • PARI
    A367095(n) = if(1==n, 0, my(pis=apply(primepi,factor(n)[,1]), pairsums = vector(binomial(1+#pis,2)), k=0); for(i=1,#pis,for(j=i,#pis,k++; pairsums[k] = pis[i]+pis[j])); #Set(pairsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A102467 Positive integers k such that d(k) <> Omega(k) + omega(k), where d = A000005, Omega = A001222 and omega = A001221.

Original entry on oeis.org

1, 12, 18, 20, 24, 28, 30, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2005

Keywords

Comments

These are the numbers which are neither prime powers (>1) nor semiprimes. - M. F. Hasler, Jan 31 2008
For n > 1, positive integers k with a composite divisor, d < k, that is relatively prime to k/d. For example 12 is in the sequence since 4 (composite) is coprime to 12/4 = 3. - Wesley Ivan Hurt, Apr 25 2020

Examples

			10 is not in the sequence since d(10) = 4 is equal to Omega(10) + omega(10) = 2 + 2 = 4.
12 is in the sequence since d(12) = 6 is not equal to Omega(12) + omega(12) = 3 + 2 = 5. - _Wesley Ivan Hurt_, Apr 25 2020
		

Crossrefs

Cf. A000005 (tau), A001221 (omega), A001222 (Omega).

Programs

  • Haskell
    a102467 n = a102467_list !! (n-1)
    a102467_list = [x | x <- [1..], a000005 x /= a001221 x + a001222 x]
    -- Reinhard Zumkeller, Dec 14 2012
    
  • Maple
    with(numtheory):
    q:= n-> is(tau(n)<>bigomega(n)+nops(factorset(n))):
    select(q, [$1..200])[];  # Alois P. Heinz, Jul 14 2023
  • Mathematica
    Select[Range[200], DivisorSigma[0, #] != PrimeOmega[#] + PrimeNu[#]&] (* Jean-François Alcover, Jun 22 2018 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f!=1 && f!=[1,1]~ \\ Charles R Greathouse IV, Oct 19 2015
  • Sage
    def is_A102467(n) :
        return sloane.A001221(n) != 1 and sloane.A001222(n) != 2
    def A102467_list(n) :
        return [k for k in (1..n) if is_A102467(k)]
    A102467_list(156)  # Peter Luschny, Feb 07 2012
    

Formula

Complement of A102466; A000005(a(n)) <> A001221(a(n)) + A001222(a(n)).
For n > 1, A086971(a(n)) > 1. - Reinhard Zumkeller, Dec 14 2012

Extensions

Name changed by Wesley Ivan Hurt, Apr 25 2020
Showing 1-10 of 35 results. Next