A018252 The nonprime numbers: 1 together with the composite numbers, A002808.
1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
Links
- N. J. A. Sloane, List of nonprimes up to 20000: Table of n, a(n) for n = 1..17738
- Eric Weisstein's World of Mathematics, Monica Set
- Eric Weisstein's World of Mathematics, Suzanne Set
- Index entries for "core" sequences
Crossrefs
Programs
-
GAP
A018252 := Difference([1..10^5], Filtered([1..10^5], IsPrime)); # Muniru A Asiru, Oct 21 2017
-
Haskell
a018252 n = a018252_list !! (n-1) a018252_list = filter ((== 0) . a010051) [1..] -- Reinhard Zumkeller, Mar 31 2014
-
Magma
[n : n in [1..100] | not IsPrime(n) ];
-
Maple
with(numtheory); sort(convert(convert([ seq(i,i=1..541) ],set) minus convert([ seq(ithprime(i),i=1..100) ],set),list)); seq(`if`(not isprime(n),n,NULL),n=1..88); # Peter Luschny, Jul 29 2009 A018252 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc: # R. J. Mathar, Oct 22 2010
-
Mathematica
nonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@ n]; Array[ nonPrime, 75] (* Robert G. Wilson v, Jan 29 2015, based on the algorithm by Labos Elemer in A006508 *) max = 90; Complement[Range[max], Prime[Range[PrimePi[max]]]] (* Harvey P. Dale, Aug 12 2011 *) Join[{1}, Select[Range[100], CompositeQ]] (* Jean-François Alcover, Nov 07 2021 *)
-
PARI
isA018252(n) = !isprime(n) A018252(n) = {local(a,b);b=n;a=1;while(a!=b,a=b;b=n+primepi(a));b} \\ Michael B. Porter, Nov 06 2009
-
PARI
a(n) = my(k=0); while(-n+n-=k-k=primepi(n), ); n; \\ Ruud H.G. van Tol, Jul 15 2024 (after code in A002808)
-
Python
from sympy import isprime def ok(n): return not isprime(n) print([k for k in range(1, 89) if ok(k)]) # Michael S. Branicky, Nov 10 2022
-
Python
from sympy import composite def A018252(n): return 1 if n == 1 else composite(n-1) # Chai Wah Wu, Nov 15 2022
-
Sage
def A018252_list(n) : return [k for k in (1..n) if not k.is_prime()] A018252_list(88) # Peter Luschny, Feb 03 2012
Formula
Let b(0) = n + pi(n) and b(n+1) = n + pi(b(n)), with pi(n) = A000720(n); then a(n) is the limit value of b(n). - Floor van Lamoen, Oct 08 2001
A010051(a(n)) = 0. - Reinhard Zumkeller, Mar 31 2014
A239968(a(n)) = n. - Reinhard Zumkeller, Dec 02 2014
Comments