A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n.
1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 4, 0, 1; 7, 2, 0, 1; 12, 1, 0, 0, 1; 19, 4, 2, 0, 0, 1; 30, 3, 1, 0, 0, 0, 1; 45, 8, 1, 2, 0, 0, 0, 1; 67, 7, 4, 1, 0, 0, 0, 0, 1; 97, 15, 3, 1, 2, 0, 0, 0, 0, 1; 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1; 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1; 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1; ... The partitions of 6 with the smallest part in brackets are .......................... . [6] .......................... . [3]+[3] .......................... . 4 +[2] . [2]+[2]+[2] .......................... . 5 +[1] . 3 + 2 +[1] . 4 +[1]+[1] . 2 + 2 +[1]+[1] . 3 +[1]+[1]+[1] . 2 +[1]+[1]+[1]+[1] . [1]+[1]+[1]+[1]+[1]+[1] .......................... There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0 else `if`(irem(n, i, 'r')=0, [0$(i-1), r], []); for j from 0 to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi end: T:= n-> b(n, n): seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2013
-
Mathematica
b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
Comments