cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092269 Spt function: total number of smallest parts (counted with multiplicity) in all partitions of n.

Original entry on oeis.org

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589, 801, 1048, 1407, 1820, 2399, 3087, 3998, 5092, 6545, 8263, 10486, 13165, 16562, 20630, 25773, 31897, 39546, 48692, 59960, 73423, 89937, 109553, 133439, 161840, 196168, 236843, 285816, 343667, 412950, 494702, 592063, 706671
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Comments

Row sums of triangle A220504. - Omar E. Pol, Jan 19 2013

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]. 1 appears 4 times in the first, 1 twice in the second, 2 twice in the third, etc.; thus a(4)=4+2+2+1+1=10.
		

Crossrefs

For higher-order spt functions see A221140-A221144.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    terms = 47; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013 *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, x^n/(1-x^n) * prod(k=n,N, 1/(1-x^k) )  );
    v = Vec(gf)
    /* Joerg Arndt, Jan 12 2013 */

Formula

G.f.: Sum_{n>=1} x^n/(1-x^n) * Product_{k>=n} 1/(1-x^k).
a(n) = A000070(n-1) + A195820(n). - Omar E. Pol, Oct 19 2011
a(n) = n*p(n) - N_2(n)/2 = n*A000041(n) - A220908(n)/2 = A066186(n) - A220907(n) = (A220909(n) - A220908(n))/2 = A211982(n)/2 (from Andrews's paper and Garvan's paper). - Omar E. Pol, Jan 03 2013
a(n) = A000041(n) + A000070(n-2) + A220479(n), n >= 2. - Omar E. Pol, Feb 16 2013
Asymptotics (Bringmann-Mahlburg, 2009): a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(8*n)) ~ sqrt(6*n)*A000041(n)/Pi. - Vaclav Kotesovec, Jul 30 2017

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A174455 Number of partitions where the number of 1's and 2's are equal.

Original entry on oeis.org

1, 0, 0, 2, 1, 1, 4, 3, 4, 8, 8, 10, 17, 18, 23, 34, 39, 48, 67, 78, 97, 127, 151, 185, 237, 281, 343, 428, 511, 616, 759, 902, 1084, 1315, 1562, 1863, 2242, 2649, 3147, 3752, 4424, 5222, 6190, 7266, 8545, 10062, 11776, 13782, 16157, 18832, 21964, 25622, 29777, 34589, 40200, 46556, 53912
Offset: 0

Views

Author

Joerg Arndt, Nov 28 2010

Keywords

Comments

From Omar E. Pol, Jan 19 2013: (Start)
Column 3 of triangle A220504.
With offset 3, a(n) is also the number of appearances of 3 as the smallest part in all partitions of n.
Also consider the sequence formed by [0, 0] together with this sequence, with offset 1, then it appears that A027336(n) = Sum_{j=1..3} a(n+j), n >= 0.
(End)

Examples

			a(8)=9, there are 8 such partitions of 9, they are
  #1:    9 =  3* 1 + 3* 2 + 0    + 0    + 0    + 0    + 0    + 0    + 0
  #2:    9 =  2* 1 + 2* 2 + 1* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #3:    9 =  1* 1 + 1* 2 + 2* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #4:    9 =  0    + 0    + 3* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #5:    9 =  0    + 0    + 0    + 1* 4 + 1* 5 + 0    + 0    + 0    + 0
  #6:    9 =  1* 1 + 1* 2 + 0    + 0    + 0    + 1* 6 + 0    + 0    + 0
  #7:    9 =  0    + 0    + 1* 3 + 0    + 0    + 1* 6 + 0    + 0    + 0
  #8:    9 =  0    + 0    + 0    + 0    + 0    + 0    + 0    + 0    + 1* 9
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
          else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0
          to n/i do %+b(n-i*j, i-1) od; % fi
        end:
    a:= n-> b(n+3, n+3):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    (* See A240056. - Clark Kimberling, Mar 31 2014 *)
    m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2015, after Joerg Arndt *)
  • PARI
    N=66;  x='x+O('x^N);
    gf=1/( (1-x^3) * prod(n=3,N, 1-x^n) );
    Vec(gf)
    /* Joerg Arndt, Jul 07 2012 */

Formula

G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). - Joerg Arndt, Jul 07 2012
a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - Clark Kimberling, Mar 31 2014
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2022

A209314 Tetrahedron T(n,k,j) of appearances of k as the smallest parts in all partition of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 1, 2, 3, 1, 1, 0, 0, 0, 1, 1, 1, 2, 3, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 7, 1, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 7, 11, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

The sum of row k of the slice n is A220504(n,k).
The sum of all elements of the n-th slice is spt(n) = A092269(n), the smallest parts partition function.
First row of slice n lists the first n partition numbers A000041.

Examples

			--------------------------------------------------
.                        Triangle
Tetrahedron              A220504       A092269(n)
(Slice n = 1..6)      (the row sums)     spt(n)
--------------------------------------------------
1;                           1             1
--------------------------------------------------
1, 1;                        2
1;                           1             3
--------------------------------------------------
1, 1, 2;                     4
0, 0;                        0
1;                           1             5
--------------------------------------------------
1, 1, 2, 3;                  7
1, 1, 0;                     2
0, 0;                        0
1;                           1            10
--------------------------------------------------
1, 1, 2, 3, 5;              12
0, 1, 0, 0;                  1
0, 0, 0;                     0
0, 0;                        0
1;                           1            14
--------------------------------------------------
1, 1, 2, 3, 5, 7;           19
1, 1, 2, 0, 0;               4
1, 1, 0, 0;                  2
0, 0, 0;                     0
0, 0;                        0
1;                           1            26
--------------------------------------------------
		

Crossrefs

A220484 Triangle read by rows: T(j,k) is the total number of appearances of the smallest parts in the j-th partition of n, with partitions as nonincreasing lists of parts in lexicographic order.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 2, 1, 5, 3, 2, 1, 1, 1, 1, 6, 4, 3, 2, 2, 1, 1, 3, 1, 2, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

The sum of row n equals spt(n) = A092269(n), the smallest part partition function.

Examples

			For n = 5:
------------------------------------------
.                         number of
Partitions of 5         smallest parts
------------------------------------------
1 + 1 + 1 + 1 + 1              5
2 + 1 + 1 + 1                  3
3 + 1 + 1                      2
2 + 2 + 1                      1
4 + 1                          1
3 + 2                          1
5                              1
------------------------------------------
So row 5 is [5, 3, 2, 1, 1, 1, 1]. The sum of row 5 is 5+3+2+1+1+1+1 = spt(5) = A092269(n) = 14.
.
Written as an irregular triangle begins:
1;
2,1;
3,1,1;
4,2,1,2,1;
5,3,2,1,1,1,1;
6,4,3,2,2,1,1,3,1,2,1;
7,5,4,3,3,2,2,1,1,1,1,2,1,1,1;
8,6,5,4,4,3,3,2,2,2,2,1,1,1,1,4,2,1,1,1,2,1;
9,7,6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,3,2,1,1,3,1,1,1;
		

Crossrefs

Column 1 is A000027. Row n has length A000041(n). Row sums give A092269.
Showing 1-4 of 4 results.