A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).
0, 1, 3, 4, 2, 8, 9, 5, 7, 15, 16, 10, 6, 14, 24, 25, 17, 11, 13, 23, 35, 36, 26, 18, 12, 22, 34, 48, 49, 37, 27, 19, 21, 33, 47, 63, 64, 50, 38, 28, 20, 32, 46, 62, 80, 81, 65, 51, 39, 29, 31, 45, 61, 79, 99, 100, 82, 66, 52, 40, 30, 44, 60, 78, 98, 120
Offset: 0
Examples
The second layer is [4, 5, 6, 7, 8] which looks like this: . . 8 . . 7, 4, 5, 6, Square array T(0,0)..T(10,10) begins: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120,... 1, 2, 7, 14, 23, 34, 47, 62, 79, 98, 119,... 4, 5, 6, 13, 22, 33, 46, 61, 78, 97, 118,... 9, 10, 11, 12, 21, 32, 45, 60, 77, 96, 117,... 16, 17, 18, 19, 20, 31, 44, 59, 76, 95, 118,... 25, 26, 27, 28, 29, 30, 43, 58, 75, 94, 117,... 36, 37, 38, 39, 40, 41, 42, 57, 74, 93, 114,... 49, 50, 51, 52, 53, 54, 55, 56, 73, 92, 113,... 64, 65, 66, 67, 68, 69, 70, 71, 72, 91, 112,... 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 111,... 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,... ...
Crossrefs
Formula
From Petros Hadjicostas, Mar 10 2021: (Start)
T(n,k) = (A342354(n,k) - 1)/2.
O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)
Extensions
Name edited by Petros Hadjicostas, Mar 10 2021
Comments