cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A220557 Number of ways to reciprocally link elements of an n X n array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 5, 64, 3966, 810778, 665748170, 1996515036228, 22849956206052338, 978504298175393645420, 158156973836014224403041023, 96121270674841350006417715266220
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Diagonal of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..6..4....0..7..7....0..6..4....6..4..7....6..4..0....0..7..7....0..7..7
..0..6..4....3..3..7....0..7..0....0..3..0....0..7..7....3..3..0....3..3..0
..0..6..4....0..3..0....3..0..0....0..0..0....3..3..0....0..0..0....6..4..0
		

A220558 Number of ways to reciprocally link elements of an n X 4 array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

5, 47, 430, 3966, 36640, 338581, 3128843, 28913910, 267196106, 2469184016, 22817958901, 210862878471, 1948603453870, 18007225586854, 166406444930000, 1537777420552101, 14210744037917219, 131322806156626838
Offset: 1

Views

Author

R. H. Hardin, Dec 16 2012

Keywords

Comments

Column 4 of A220562.

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10):
..0..0..6..4....6..4..0..0....0..7..0..0....0..0..6..4....0..7..7..7
..6..4..6..4....0..6..4..0....3..0..6..4....0..0..0..0....3..3..3..7
..0..6..4..0....0..0..0..0....6..4..6..4....6..4..0..0....6..4..3..0
		

Crossrefs

Cf. A220562.

Formula

Empirical: a(n) = 11*a(n-1) - 17*a(n-2) + 7*a(n-3) - a(n-4).
Empirical g.f.: x*(5 - 8*x - 2*x^2) / (1 - 11*x + 17*x^2 - 7*x^3 + x^4). - Colin Barker, Jul 31 2018

A220559 Number of ways to reciprocally link elements of an n X 5 array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

8, 149, 2604, 45966, 810778, 14298089, 252139015, 4446314533, 78407942556, 1382674335890, 24382584703194, 429971411669361, 7582273047532603, 133708574584054949, 2357865880743076540, 41579468847568886038
Offset: 1

Views

Author

R. H. Hardin, Dec 16 2012

Keywords

Comments

Column 5 of A220562.

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10):
..0..0..0..6..4....0..0..0..6..4....0..0..0..6..4....0..0..6..4..0
..6..4..0..6..4....0..6..4..0..0....0..6..4..7..0....0..7..7..7..0
..0..6..4..0..0....0..6..4..0..0....0..0..3..0..0....3..3..3..0..0
		

Crossrefs

Cf. A220562.

Formula

Empirical: a(n) = 21*a(n-1) - 62*a(n-2) + 47*a(n-3) - 5*a(n-4) for n>5.
Empirical g.f.: x*(8 - 19*x - 29*x^2 + 144*x^3 - 23*x^4) / ((1 - x)*(1 - 20*x + 42*x^2 - 5*x^3)). - Colin Barker, Jul 31 2018

A220560 Number of ways to reciprocally link elements of an nX6 array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

13, 481, 16310, 561636, 19333688, 665748170, 22926570957, 789539775889, 27190037181789, 936366170726784, 32246430390993213, 1110497486239608510, 38243137393453789704, 1317011137774021018880, 45355021979509463823738
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Column 6 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..7..6..4..0..0....6..4..6..4..6..4....0..0..0..7..0..0....0..0..0..7..0..7
..3..0..7..0..6..4....0..0..0..0..7..0....0..7..3..7..6..4....6..4..3..0..3..0
..0..3..0..6..4..0....6..4..0..3..0..0....3..0..3..0..6..4....0..0..0..0..0..0
		

Formula

Empirical: a(n) = 43*a(n-1) -317*a(n-2) +783*a(n-3) -721*a(n-4) +375*a(n-5) -125*a(n-6) +19*a(n-7) -a(n-8) for n>9

A220561 Number of ways to reciprocally link elements of an nX7 array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

21, 1544, 101052, 6743873, 449429440, 29955561052, 1996515036228, 133064181801048, 8868465829053416, 591065515195237024, 39393331961841054032, 2625486595153945514656, 174983417444316851450400
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Column 7 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..0..0..0..0..7..0....0..0..0..0..7..6..4....0..0..0..0..0..6..4
..0..6..4..0..3..6..4....6..4..7..3..0..0..0....6..4..6..4..6..4..0
..6..4..6..4..0..0..0....0..3..0..6..4..0..0....6..4..0..0..6..4..0
		

Formula

Empirical: a(n) = 85*a(n-1) -1330*a(n-2) +7350*a(n-3) -15316*a(n-4) +12720*a(n-5) -3168*a(n-6) for n>9

A220563 Number of ways to reciprocally link elements of an 2 X n array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 5, 14, 47, 149, 481, 1544, 4965, 15957, 51293, 164870, 529947, 1703417, 5475329, 17599456, 56570281, 181834969, 584475733, 1878691886, 6038716423, 19410365421, 62391120801, 200545011400, 644615789581, 2072001259341, 6660074556205
Offset: 1

Views

Author

R. H. Hardin, Dec 16 2012

Keywords

Comments

Row 2 of A220562.
From Wajdi Maaloul, Jul 04 2022: (Start)
For n > 0, a(n) is the number of ways to tile the S-shaped figure of length n below with squares and dominoes. For instance, a(4) is the number of ways to tile this figure with squares and dominoes.
_ _
|||_||
|||_|_|
(End)

Examples

			Some solutions for n=3, 0=self, 3=ne, 4=w, 6=e, 7=sw (reciprocal directions total 10):
  0 6 4   0 0 0   0 7 0   6 4 0   0 0 0   0 7 0   0 6 4
  0 6 4   0 0 0   3 6 4   0 0 0   0 6 4   3 0 0   0 0 0
		

Crossrefs

Cf. A220562.

Formula

a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4).
G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 - 3*x - x^2 + x^3)). - Colin Barker, Jul 31 2018
For n>0, a(n) = A316726(n+1) - A033505(n+1). - Wajdi Maaloul, Jul 04 2022

A220564 Number of ways to reciprocally link elements of an 3 X n array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 13, 64, 430, 2604, 16310, 101052, 628269, 3901815, 24240377, 150578968, 935414825, 5810847665, 36097422853, 224239670624, 1392992694942, 8653368270212, 53755331997318, 333931897912068, 2074408410086741
Offset: 1

Views

Author

R. H. Hardin, Dec 16 2012

Keywords

Comments

Row 3 of A220562.

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10):
..0..6..4....6..4..0....0..7..0....0..7..7....0..6..4....6..4..7....0..0..0
..6..4..0....0..7..0....3..0..0....3..3..7....0..0..0....0..3..7....6..4..0
..0..6..4....3..0..0....6..4..0....0..3..0....0..0..0....0..3..0....0..6..4
		

Crossrefs

Cf. A220562.

Formula

Empirical: a(n) = 4*a(n-1) + 15*a(n-2) - 5*a(n-3) - 19*a(n-4) + 9*a(n-5) + 2*a(n-6) - a(n-7).
Empirical g.f.: x*(1 - x)*(1 + 10*x + 7*x^2 - 9*x^3 - x^4 + x^5) / ((1 + x - x^2)*(1 - 5*x - 9*x^2 + 9*x^3 + x^4 - x^5)). - Colin Barker, Aug 01 2018

A220565 Number of ways to reciprocally link elements of an 4Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 34, 292, 3966, 45966, 561636, 6743873, 81437539, 981628768, 11839220919, 142763980945, 1721628751022, 20761198193082, 250361650578082, 3019134246246588, 36408038586112352, 439048064386701057
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Row 4 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..6..4....0..6..4....0..6..4....0..7..0....0..0..0....6..4..0....6..4..0
..0..0..0....0..7..0....0..7..0....3..0..0....6..4..0....0..6..4....0..7..0
..0..7..0....3..6..4....3..6..4....6..4..7....0..6..4....0..7..7....3..0..0
..3..0..0....0..6..4....0..0..0....0..3..0....0..6..4....3..3..0....0..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) +84*a(n-2) +194*a(n-3) -338*a(n-4) -1077*a(n-5) +616*a(n-6) +1932*a(n-7) -788*a(n-8) -1136*a(n-9) +325*a(n-10) +284*a(n-11) -48*a(n-12) -30*a(n-13) +2*a(n-14) +a(n-15)

A220566 Number of ways to reciprocally link elements of an 5Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 89, 1332, 36640, 810778, 19333688, 449429440, 10536960271, 246344047375, 5764617097479, 134855487893714, 3155067573838299, 73813420827751321, 1726896241431387347, 40401344327635974032, 945204561717125804080
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Row 5 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..0..0....6..4..0....6..4..7....0..0..0....0..6..4....6..4..0....0..0..7
..0..0..0....0..0..0....0..3..0....0..6..4....6..4..7....6..4..0....0..3..0
..0..0..7....6..4..0....0..0..0....0..0..0....0..3..0....0..0..0....0..0..7
..0..3..0....6..4..0....6..4..7....6..4..0....0..0..0....0..7..0....0..3..0
..0..0..0....6..4..0....0..3..0....6..4..0....0..0..0....3..0..0....0..6..4
		

Formula

Empirical: a(n) = 8*a(n-1) +332*a(n-2) +1166*a(n-3) -10416*a(n-4) -41922*a(n-5) +174048*a(n-6) +535206*a(n-7) -1872086*a(n-8) -2804534*a(n-9) +11470692*a(n-10) +3617576*a(n-11) -32706416*a(n-12) +4049368*a(n-13) +51508932*a(n-14) -14992866*a(n-15) -49988407*a(n-16) +16438786*a(n-17) +31549556*a(n-18) -9212528*a(n-19) -13108544*a(n-20) +2853616*a(n-21) +3512372*a(n-22) -487178*a(n-23) -584214*a(n-24) +44610*a(n-25) +58000*a(n-26) -2006*a(n-27) -3248*a(n-28) +34*a(n-29) +92*a(n-30) -a(n-32)

A220567 Number of ways to reciprocally link elements of an 6Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 233, 6076, 338581, 14298089, 665748170, 29955561052, 1363847439227, 61845935792336, 2808292682072854, 127461441592952329, 5786012622635830257, 262638882187378528534, 11921898805633926722093, 541164958214032363841199
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Row 6 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..7..7....0..0..0....6..4..7....0..7..0....0..7..0....0..0..0....0..6..4
..3..3..0....6..4..0....0..3..0....3..6..4....3..7..0....6..4..0....6..4..7
..6..4..0....0..6..4....0..6..4....6..4..0....3..0..0....0..0..0....0..3..0
..0..0..0....6..4..7....6..4..0....0..7..0....0..7..0....0..0..0....0..0..7
..0..7..0....0..3..0....0..6..4....3..7..0....3..7..7....0..0..7....0..3..0
..3..0..0....0..6..4....0..6..4....3..6..4....3..3..0....0..3..0....6..4..0
		

Formula

Empirical: a(n) = 13*a(n-1) +1348*a(n-2) +10654*a(n-3) -198504*a(n-4) -1906076*a(n-5) +16144268*a(n-6) +135853346*a(n-7) -925177576*a(n-8) -4891188529*a(n-9) +35999318281*a(n-10) +81980396412*a(n-11) -848296316904*a(n-12) -276758340388*a(n-13) +11227641980488*a(n-14) -7107958733596*a(n-15) -92787258095632*a(n-16) +107881224287236*a(n-17) +525583351897147*a(n-18) -774675289613655*a(n-19) -2182902615756840*a(n-20) +3555500220788694*a(n-21) +6973910104740084*a(n-22) -11426713159097796*a(n-23) -17667940720548336*a(n-24) +26747813225197794*a(n-25) +35945989169311476*a(n-26) -46394604844529149*a(n-27) -58560503957694547*a(n-28) +59946651607436776*a(n-29) +75473026016657552*a(n-30) -57619701988418728*a(n-31) -75893814357642448*a(n-32) +40983675195728936*a(n-33) +58931290214948032*a(n-34) -21385512054198856*a(n-35) -35152757210761395*a(n-36) +8057875480743783*a(n-37) +16091164614749124*a(n-38) -2117225467318182*a(n-39) -5658108579422624*a(n-40) +352030436802844*a(n-41) +1530178310024236*a(n-42) -22441127837162*a(n-43) -318296736753680*a(n-44) -5136539584403*a(n-45) +50823610079499*a(n-46) +1734560714908*a(n-47) -6199297816488*a(n-48) -263242733620*a(n-49) +572842763656*a(n-50) +25065179764*a(n-51) -39590221744*a(n-52) -1591760572*a(n-53) +2008410297*a(n-54) +67587747*a(n-55) -72760800*a(n-56) -1863630*a(n-57) +1806100*a(n-58) +31300*a(n-59) -28744*a(n-60) -282*a(n-61) +260*a(n-62) +a(n-63) -a(n-64)
Showing 1-10 of 11 results. Next