A220639 Number of ways to reciprocally link elements of an n X 3 array either to themselves or to exactly one king-move neighbor.
1, 3, 40, 369, 3755, 37320, 373177, 3725843, 37213728, 371654153, 3711809483, 37070598992, 370232236753, 3697589375491, 36928628181272, 368814220524417, 3683427651446923, 36787191180049816, 367401660507886793, 3669320102980547411, 36646296045314442000
Offset: 0
Examples
Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10) ..0..6..4....0..0..0....6..4..0....8..9..0....8..9..0....8..0..0....6..4..0 ..9..0..8....9..0..0....8..6..4....2..9..1....2..0..1....2..0..0....0..0..0 ..0..1..2....0..1..0....2..6..4....0..0..1....6..4..0....0..6..4....6..4..0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500 (terms n = 1..210 from R. H. Hardin)
- Index entries for linear recurrences with constant coefficients, signature (8,22,-20,-16,10,-3).
Programs
-
Maple
gf:= -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Jun 03 2014
-
Mathematica
LinearRecurrence[{8,22,-20,-16,10,-3},{3,40,369,3755,37320,373177},30] (* Harvey P. Dale, Nov 17 2013 *)
Formula
Empirical: a(n) = 8*a(n-1) +22*a(n-2) -20*a(n-3) -16*a(n-4) +10*a(n-5) -3*a(n-6).
G.f.: -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)). - Alois P. Heinz, Jun 03 2014
Comments