cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220639 Number of ways to reciprocally link elements of an n X 3 array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 3, 40, 369, 3755, 37320, 373177, 3725843, 37213728, 371654153, 3711809483, 37070598992, 370232236753, 3697589375491, 36928628181272, 368814220524417, 3683427651446923, 36787191180049816, 367401660507886793, 3669320102980547411, 36646296045314442000
Offset: 0

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Column 3 of A220644.

Examples

			Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4....0..0..0....6..4..0....8..9..0....8..9..0....8..0..0....6..4..0
..9..0..8....9..0..0....8..6..4....2..9..1....2..0..1....2..0..0....0..0..0
..0..1..2....0..1..0....2..6..4....0..0..1....6..4..0....0..6..4....6..4..0
		

Programs

  • Maple
    gf:= -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 03 2014
  • Mathematica
    LinearRecurrence[{8,22,-20,-16,10,-3},{3,40,369,3755,37320,373177},30] (* Harvey P. Dale, Nov 17 2013 *)

Formula

Empirical: a(n) = 8*a(n-1) +22*a(n-2) -20*a(n-3) -16*a(n-4) +10*a(n-5) -3*a(n-6).
G.f.: -(x^4-3*x^3+6*x^2+5*x-1)/((x-1)*(3*x^5-7*x^4+9*x^3+29*x^2+7*x-1)). - Alois P. Heinz, Jun 03 2014