A220673 Coefficients of formal series in powers of (tan(x))^2 for tan(5*x)/tan(x).
5, 40, 376, 3560, 33720, 319400, 3025400, 28657000, 271443000, 2571145000, 24354235000, 230686625000, 2185095075000, 20697517625000, 196049700875000, 1857009420625000, 17589845701875000, 166613409915625000, 1578184870646875000
Offset: 0
Examples
Q(5,x=0.1) = tan(0.5)/tan(0.1) = 5.444802663 (Maple 10 digits); G(5,tan(0.1)^2) = 5.444802664; Sum_{n>=0} a(n)*(tan(0.1))^(2*n) = 5.444802664.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((5-10*x+x^2)/(1-10*x+5*x^2))); // G. C. Greubel, Mar 06 2018 -
Mathematica
CoefficientList[Series[(5-10*x+x^2)/(1-10*x+5*x^2), {x,0,50}], x] (* G. C. Greubel, Mar 06 2018 *)
-
PARI
my(x='x+O('x^30)); Vec((5-10*x+x^2)/(1-10*x+5*x^2)) \\ G. C. Greubel, Mar 06 2018
Formula
O.g.f.: G(5,x) = (5 - 10*x + x^2)/(1 - 10*x + 5*x^2).
a(n) = delta(n,0)/5 - 8*b(n) + 24*b(n+1)/5, n>=0, with Kronecker's delta and b(n):= A190987(n).
E.g.f.: (1 + 8*exp(5*x)*(3*cosh(2*sqrt(5)*x) + sqrt(5)*sinh(2*sqrt(5)*x)))/5. - Stefano Spezia, May 23 2025
Comments