cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220690 Number of acyclic graphs on {1,2,...,n} such that the node with label 1 is in the same connected component (tree) as the node with label 2.

Original entry on oeis.org

0, 0, 1, 4, 24, 198, 2110, 27768, 436656, 8003950, 167779068, 3961727820, 104102329504, 3013887239454, 95338047836520, 3272043459321328, 121106541865151040, 4808924948167249302, 203931444227955436816, 9198925314402386788500, 439809753701222702598528
Offset: 0

Views

Author

Geoffrey Critzer, Apr 13 2013

Keywords

Crossrefs

Cf. A221864.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j) *(j+1)^(j-1) *b(n-1-j), j=0..n-1))
        end:
    a:= n-> add(binomial(n-2, k)*(k+2)^k*b(n-k-2), k=0..n-2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 13 2013
  • Mathematica
    nn=20;u=Sum[n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Integrate[Integrate[D[D[u,x],x]Exp[u],x],x],{x,0,nn}],x]
  • PARI
    N = 66;  x = 'x + O('x^N);
    U = sum(n=1,N,n^(n-2)*x^n/n!);
    egf = intformal(intformal( deriv(deriv(U)) * exp(U) ));
    gf = serlaplace(egf) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 13 2013 */

Formula

E.g.f.: Double integral of U''(x)*exp(U(x)) dx^2 where U(x) is the e.g.f. for A000272.
a(n) = Sum_{k=0..n-2} binomial(n-2,k)*(k+2)^k*A001858(n-k-2).