A220690 Number of acyclic graphs on {1,2,...,n} such that the node with label 1 is in the same connected component (tree) as the node with label 2.
0, 0, 1, 4, 24, 198, 2110, 27768, 436656, 8003950, 167779068, 3961727820, 104102329504, 3013887239454, 95338047836520, 3272043459321328, 121106541865151040, 4808924948167249302, 203931444227955436816, 9198925314402386788500, 439809753701222702598528
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A221864.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(binomial(n-1, j) *(j+1)^(j-1) *b(n-1-j), j=0..n-1)) end: a:= n-> add(binomial(n-2, k)*(k+2)^k*b(n-k-2), k=0..n-2): seq(a(n), n=0..20); # Alois P. Heinz, Apr 13 2013
-
Mathematica
nn=20;u=Sum[n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Integrate[Integrate[D[D[u,x],x]Exp[u],x],x],{x,0,nn}],x]
-
PARI
N = 66; x = 'x + O('x^N); U = sum(n=1,N,n^(n-2)*x^n/n!); egf = intformal(intformal( deriv(deriv(U)) * exp(U) )); gf = serlaplace(egf) + 'c0; v = Vec(gf); v[1]-='c0; v /* Joerg Arndt, Apr 13 2013 */