cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220753 Expansion of (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).

Original entry on oeis.org

1, 4, 8, 11, 22, 25, 50, 53, 106, 109, 218, 221, 442, 445, 890, 893, 1786, 1789, 3578, 3581, 7162, 7165, 14330, 14333, 28666, 28669, 57338, 57341, 114682, 114685, 229370, 229373, 458746, 458749, 917498, 917501, 1835002, 1835005, 3670010, 3670013
Offset: 0

Views

Author

Philippe Deléham, Apr 13 2013

Keywords

Crossrefs

Programs

  • Magma
    m:=41; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)))); // Bruno Berselli, Apr 13 2013
  • Mathematica
    Table[7 2^Floor[n/2] - (3/2) (3 + (-1)^n), {n, 0, 40}] (* Bruno Berselli, Apr 13 2013 *)
    LinearRecurrence[{0, 3, 0, -2}, {1, 4, 8, 11}, 40] (* T. D. Noe, Apr 17 2013 *)

Formula

G.f.: (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).
a(2n) = 7*2^n - 6 = A048489(n) = A063757(2n) = A005009(n)-6.
a(2n+1) = 7*2^n - 3 = A048489(n) + 3 = A063757(2n+1) - 3*A000225(n) = A005009(n)-3.
a(n) = a(n-1)*2 if n even.
a(n) = a(n-1)+3 if n odd.
a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=4, a(2)=8, a(3)=11.
a(n) = 7*2^floor(n/2) - (3/2)*(3+(-1)^n).
a(n) = A047290(A083416(n+1)). [Bruno Berselli, Apr 13 2013]